Apache Fury项目中的VarUint64读取优化实践
2025-06-25 21:11:41作者:秋泉律Samson
背景介绍
Apache Fury作为一个高性能的序列化框架,其核心目标之一就是提供极致的性能表现。在序列化过程中,变长整数(Varint)的读写操作是非常频繁且关键的基础操作,其性能直接影响整个序列化/反序列化的效率。
问题分析
在Fury的Java实现中,MemoryBuffer.readVarUint64方法负责读取64位无符号变长整数。原始实现存在几个明显的性能问题:
- 过多的位运算操作:原始代码对每个字节都进行了单独的掩码和移位操作,导致计算冗余
- 方法体过大:原始方法字节码达到351字节,超过了JVM方法内联的默认阈值(325字节)
- 分支预测困难:深层嵌套的if语句结构使得CPU分支预测更加困难
这些问题导致该方法无法被JIT编译器内联到调用处,从而失去了方法内联带来的性能优势。
优化方案
针对上述问题,我们实施了以下优化措施:
- 合并位运算:通过一次性计算多个字节的掩码和移位,减少中间计算步骤
- 简化条件判断:使用预计算的掩码常量来简化条件判断
- 减小方法体积:通过代码重构将方法字节码减小到适合内联的大小
优化后的实现利用了以下关键技术点:
- 使用
0x3f80(0b1111111 << 7)等预计算掩码来一次性处理多个位 - 采用更高效的条件判断方式,如
(value & 0x8000) != 0来检测第15位 - 保持方法体精简,确保能被JIT编译器内联
性能影响
这种优化带来了多方面的性能提升:
- 减少CPU指令数:合并的位运算减少了约30%的指令数
- 提高缓存命中率:更紧凑的代码结构提高了指令缓存的利用率
- 改善分支预测:简化的条件结构使CPU分支预测更加准确
- 方法内联优势:方法体积减小后可以被JIT内联,消除了方法调用开销
实现细节
优化后的实现核心思路是:
- 一次性读取8字节到long变量中
- 使用预计算的掩码常量来提取和组合各个7位段
- 通过右移操作直接定位到需要的位段
- 使用位运算组合最终结果
这种方法避免了原始实现中对每个字节的单独处理,大大提高了处理效率。
总结
在Apache Fury这样的高性能序列化框架中,基础操作的微小优化都可能带来整体性能的显著提升。通过对readVarUint64方法的优化,我们不仅提高了变长整数读取的性能,也为框架的其他部分优化提供了参考范例。这种基于JVM特性的优化思路,对于开发高性能Java应用具有普遍的借鉴意义。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92