MEGNet 开源项目教程
2024-09-13 03:35:23作者:范靓好Udolf
1. 项目介绍
MEGNet(MatErials Graph Network)是一个基于图网络的通用机器学习框架,专门用于材料科学中的分子和晶体属性预测。该项目由Materials Virtual Lab开发,实现了DeepMind的图网络架构,旨在通过图网络模型实现材料科学中的机器学习任务。MEGNet已经在多个数据集上展示了其优越的性能,特别是在分子和晶体的属性预测方面。
2. 项目快速启动
安装
首先,确保你已经安装了Python环境。然后,使用pip安装MEGNet:
pip install megnet
使用示例
以下是一个简单的示例,展示如何使用预训练的MEGNet模型进行晶体属性的预测:
from megnet.utils.models import load_model
from pymatgen.core import Structure, Lattice
# 加载预训练模型
model = load_model("logK_MP_2018")
# 创建一个晶体结构
structure = Structure(Lattice.cubic(3.167), ['Mo', 'Mo'], [[0, 0, 0], [0.5, 0.5, 0.5]])
# 使用模型预测晶体的体积模量
predicted_K = 10 ** model.predict_structure(structure).ravel()[0]
print(f'预测的体积模量 K 为 {predicted_K:.0f} GPa')
3. 应用案例和最佳实践
应用案例
MEGNet在多个材料科学任务中展示了其强大的预测能力,包括:
- 分子属性预测:如HOMO、LUMO、能量间隙等。
- 晶体属性预测:如形成能、带隙、体积模量等。
最佳实践
- 数据预处理:确保输入数据格式正确,特别是晶体结构数据。
- 模型选择:根据任务选择合适的预训练模型,或者根据需要训练新的模型。
- 超参数调优:通过调整模型参数(如MEGNet块的数量、特征维度等)来优化模型性能。
4. 典型生态项目
MEGNet作为一个开源项目,与其他材料科学和机器学习项目有良好的兼容性:
- Pymatgen:一个用于材料科学的高级Python库,MEGNet使用Pymatgen进行晶体结构的处理和表示。
- Deep Graph Library (DGL):一个用于图神经网络的高效库,MEGNet的图网络实现基于DGL。
- TensorFlow/Keras:MEGNet的模型训练和推理基于TensorFlow和Keras,提供了强大的深度学习支持。
通过这些生态项目的结合,MEGNet能够更好地服务于材料科学的研究和应用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259