探索材料科学的未来:MEGNet开源项目推荐
2024-09-16 22:00:40作者:裴麒琰
项目介绍
MEGNet(MatErials Graph Network)是由Materials Virtual Lab开发的一个基于图网络的机器学习框架,专门用于材料科学领域的研究。该项目旨在通过深度学习技术,实现对分子和晶体材料性质的高精度预测。MEGNet的核心思想是将材料结构表示为图网络,并通过图神经网络(GNN)进行学习和预测。
项目技术分析
MEGNet基于DeepMind的图网络架构,结合了多层感知机(MLP)和图神经网络(GNN)的优势。其核心框架包括多个MEGNet块,每个块由两个MLP层和一个图网络模块组成。通过堆叠多个MEGNet块,模型能够捕捉到材料结构中更广泛的相互作用,从而提高预测精度。
MEGNet的输入是一个图结构,其中节点表示原子,边表示原子间的键,全局状态表示整个系统的属性。通过迭代更新节点、边和全局状态,MEGNet能够生成一个输出图,最终通过set2set
操作映射到标量或向量属性。
项目及技术应用场景
MEGNet在材料科学领域具有广泛的应用前景,特别是在以下几个方面:
- 材料性质预测:MEGNet可以用于预测材料的多种性质,如形成能、带隙、体模量和剪切模量等。这些预测对于新材料的设计和开发至关重要。
- 分子和晶体结构分析:通过图网络的表示,MEGNet能够深入分析分子和晶体结构的内在关系,帮助研究人员理解材料的微观结构与宏观性质之间的联系。
- 多保真度材料建模:MEGNet支持多保真度数据的学习,能够结合不同精度的数据进行建模,提高模型的泛化能力和预测精度。
项目特点
- 高精度预测:MEGNet在多个数据集上展示了极高的预测精度,特别是在分子和晶体性质的预测上,其误差远低于传统方法。
- 灵活的模型架构:MEGNet支持多种输入和输出格式,用户可以根据需求自定义模型架构,灵活应对不同的应用场景。
- 易于使用:MEGNet提供了预训练模型和详细的教程,用户无需深入了解深度学习细节即可快速上手。通过简单的API调用,用户可以轻松加载预训练模型并进行预测。
- 开源社区支持:MEGNet是一个开源项目,拥有活跃的开发者社区。用户可以自由地贡献代码、提出问题和分享经验,共同推动项目的发展。
结语
MEGNet作为一个前沿的材料科学机器学习框架,不仅在技术上具有显著优势,而且在实际应用中也展现了巨大的潜力。无论是学术研究还是工业应用,MEGNet都能为材料科学的发展提供强有力的支持。我们诚邀广大研究人员和开发者加入MEGNet社区,共同探索材料科学的未来。
项目地址:MEGNet GitHub
预训练模型使用示例:
from megnet.utils.models import load_model
from pymatgen.core import Structure, Lattice
# 加载预训练模型
model = load_model("logK_MP_2018")
# 构建一个晶体结构
structure = Structure(Lattice.cubic(3.167), ['Mo', 'Mo'], [[0, 0, 0], [0.5, 0.5, 0.5]])
# 预测体模量K
predicted_K = 10 ** model.predict_structure(structure).ravel()[0]
print(f'The predicted K for {structure.composition.reduced_formula} is {predicted_K:.0f} GPa.')
通过以上示例,您可以轻松体验MEGNet的强大功能。快来加入我们,一起探索材料科学的无限可能吧!
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
332
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70