探索材料科学的未来:MEGNet开源项目推荐
2024-09-16 19:55:39作者:裴麒琰
项目介绍
MEGNet(MatErials Graph Network)是由Materials Virtual Lab开发的一个基于图网络的机器学习框架,专门用于材料科学领域的研究。该项目旨在通过深度学习技术,实现对分子和晶体材料性质的高精度预测。MEGNet的核心思想是将材料结构表示为图网络,并通过图神经网络(GNN)进行学习和预测。
项目技术分析
MEGNet基于DeepMind的图网络架构,结合了多层感知机(MLP)和图神经网络(GNN)的优势。其核心框架包括多个MEGNet块,每个块由两个MLP层和一个图网络模块组成。通过堆叠多个MEGNet块,模型能够捕捉到材料结构中更广泛的相互作用,从而提高预测精度。
MEGNet的输入是一个图结构,其中节点表示原子,边表示原子间的键,全局状态表示整个系统的属性。通过迭代更新节点、边和全局状态,MEGNet能够生成一个输出图,最终通过set2set操作映射到标量或向量属性。
项目及技术应用场景
MEGNet在材料科学领域具有广泛的应用前景,特别是在以下几个方面:
- 材料性质预测:MEGNet可以用于预测材料的多种性质,如形成能、带隙、体模量和剪切模量等。这些预测对于新材料的设计和开发至关重要。
- 分子和晶体结构分析:通过图网络的表示,MEGNet能够深入分析分子和晶体结构的内在关系,帮助研究人员理解材料的微观结构与宏观性质之间的联系。
- 多保真度材料建模:MEGNet支持多保真度数据的学习,能够结合不同精度的数据进行建模,提高模型的泛化能力和预测精度。
项目特点
- 高精度预测:MEGNet在多个数据集上展示了极高的预测精度,特别是在分子和晶体性质的预测上,其误差远低于传统方法。
- 灵活的模型架构:MEGNet支持多种输入和输出格式,用户可以根据需求自定义模型架构,灵活应对不同的应用场景。
- 易于使用:MEGNet提供了预训练模型和详细的教程,用户无需深入了解深度学习细节即可快速上手。通过简单的API调用,用户可以轻松加载预训练模型并进行预测。
- 开源社区支持:MEGNet是一个开源项目,拥有活跃的开发者社区。用户可以自由地贡献代码、提出问题和分享经验,共同推动项目的发展。
结语
MEGNet作为一个前沿的材料科学机器学习框架,不仅在技术上具有显著优势,而且在实际应用中也展现了巨大的潜力。无论是学术研究还是工业应用,MEGNet都能为材料科学的发展提供强有力的支持。我们诚邀广大研究人员和开发者加入MEGNet社区,共同探索材料科学的未来。
项目地址:MEGNet GitHub
预训练模型使用示例:
from megnet.utils.models import load_model
from pymatgen.core import Structure, Lattice
# 加载预训练模型
model = load_model("logK_MP_2018")
# 构建一个晶体结构
structure = Structure(Lattice.cubic(3.167), ['Mo', 'Mo'], [[0, 0, 0], [0.5, 0.5, 0.5]])
# 预测体模量K
predicted_K = 10 ** model.predict_structure(structure).ravel()[0]
print(f'The predicted K for {structure.composition.reduced_formula} is {predicted_K:.0f} GPa.')
通过以上示例,您可以轻松体验MEGNet的强大功能。快来加入我们,一起探索材料科学的无限可能吧!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328