PyTorch 0.4+ YOLOv3:一款高效实现的YOLOv3框架
2024-05-23 16:00:55作者:庞队千Virginia
该项目是基于PyTorch 0.41或更高版本的YOLOv3实现,源自@github/marvis的pytorch-yolo2,并进行了优化和扩展,尤其在Windows环境下表现良好。这个库不仅完全支持YOLOv3的训练和检测,而且可以轻松适应YOLOv2,无需修改源代码。
项目简介
pytorch-0.4-yolov3致力于提供一个简洁且灵活的YOLOv3实现。通过调整和改进原版代码,这个库现在可以在Python 3和PyTorch 0.4上运行,并且速度更快,可读性更强。此外,它还具备训练数据自动检查NAN值并应用梯度裁剪的功能。
技术分析
该库对原始的pytorch-yolo2进行了一系列重构,包括:
- 调整了多线程处理以适应Windows环境。
- 修改了权重加载与保存,使其兼容YOLOv2和YOLOv3模型。
- 对
region_loss.py重命名为region_layer.py,并且将yolo_layer.py和region_layer.py的输出封装到字典变量中,提高了代码的结构性和通用性。 - 兼容最新版本的PyTorch,进行了性能提升和优化。
应用场景
无论您是想针对COCO或PASCAL VOC数据集进行对象检测,还是希望训练自己的数据集,这个库都能满足需求。只需简单运行train.py脚本,即可启动训练过程。例如,以下命令可以用于训练自定义的数据:
python train.py -d cfg/coco.data -c cfg/yolo_v3.cfg -w yolov3.weights
在训练过程中,新权重将定期备份。如果希望从预训练权重开始,可以添加-r选项。
项目特点
- 跨平台: 代码经过优化,可在Windows环境中无缝运行。
- 兼容性: 支持YOLOv2和YOLOv3模型,无需改动代码。
- 灵活性: 完全支持自定义数据集的训练。
- 稳定训练: 提供NAN值检查和梯度裁剪,确保模型训练的稳定性。
- 效率优化: 代码经过优化,提高了运行速度和易读性。
项目作者还提供了他们用此库训练YOLOv2和YOLOv3时的视频记录,展示了模型在不同阶段的表现和收敛情况。
使用与验证
检测图像对象相当直观,只需使用detect.py脚本,如下所示:
wget https://pjreddie.com/media/files/yolov3.weights
python detect.py cfg/yolo_v3.cfg yolov3.weights data/dog.jpg data/coco.names
这个开源项目不仅为研究人员和开发者提供了便捷的YOLOv3训练和检测工具,还为自我实验和性能调优提供了广阔的空间。如果您正寻找一个功能强大、易于使用的YOLOv3实现,那么pytorch-0.4-yolov3绝对值得尝试。
许可证:该项目遵循MIT许可(见LICENSE文件)。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92