YOLOv7 深度学习物体检测框架教程
2024-08-07 16:07:02作者:温玫谨Lighthearted
1. 项目介绍
YOLOv7 是由 Chien-Yao Wang 等人开发的一个实时对象检测模型,它在速度与准确性之间取得了新的平衡点。该框架构建于 PyTorch 上,集成了多项优化策略,如可训练的 Bag-of-Freebies(BoF)技术,以提高性能。YOLOv7 在多个速度范围内超越了先前的 YOLO 版本以及众多基于Transformer和卷积的检测器,尤其是在实时应用中表现出色。
2. 项目快速启动
环境准备
确保已安装以下依赖项:
- Python >= 3.7
- PyTorch >= 1.12.0
- CUDA 和 cuDNN 根据你的硬件需求
数据集准备
下载 COCO 数据集并配置 data/coco.yaml 文件:
mkdir data
cd data
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget https://raw.githubusercontent.com/cocodataset/cocoapi/master/annotations/image_info_train2017.json
wget https://raw.githubusercontent.com/cocodataset/cocoapi/master/annotations/instances_val2017.json
unzip train2017.zip
unzip val2017.zip
单GPU训练
训练 YOLOv7-P5 模型:
python train.py --workers 8 --device 0 --batch-size 32 \
--data data/coco.yaml --img 640 640 \
--cfg cfg/training/yolov7.yaml \
--weights '' --name yolov7 --hyp data/hyp/scratch/p5.yaml
多GPU训练
使用分布式训练训练 YOLOv7-P5 模型:
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 \
train.py --workers 8 --device 0 1 2 3 \
--sync-bn --batch-size 128 \
--data data/coco.yaml --img 640 640 \
--cfg cfg/training/yolov7.yaml \
--weights '' --name yolov7 --hyp data/hyp/scratch/p5.yaml
3. 应用案例和最佳实践
- 可用于实时视频流中的物体检测。
- 使用
--fp16参数加快推理速度,以适应资源有限的设备。 - 调整
cfg/training中的 YAML 配置文件来实验不同的超参数设置,优化性能。 - 利用
--weights参数加载预训练权重进行微调或继续训练。
4. 典型生态项目
- Megvii-BaseDetection/YOLOX - Megvii 基于 PyTorch 的 YOLO 系列算法实现。
- ultralytics/yolov3 - ultralytics 开源的 YOLOv3 实现。
- ultralytics/yolov5 - ultralytics 提供的 YOLOv5 实现。
- DingXiaoH/RepVGG - 更简单有效的卷积网络 RepVGG。
以上是关于 YOLOv7 的简要介绍及启动指南。要深入了解该项目,建议查阅仓库内的 README 文件以及作者提供的相关论文。祝你在物体检测的世界里探索愉快!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870