【NeurIPS'2022】EMCL:紧凑型视频与语言表示的期望最大化对比学习
2024-09-17 00:07:21作者:裘旻烁
项目介绍
在NeurIPS 2022上,我们提出了一种名为**Expectation-Maximization Contrastive Learning (EMCL)**的新方法,用于学习紧凑的视频与语言表示。该方法通过期望最大化(EM)框架改进了传统的对比学习(CL),旨在更有效地缩小视觉与文本表示之间的模态差距,从而提升视频与文本检索的性能。
项目技术分析
技术背景
传统的视频与语言表示学习方法,如CLIP,通过对比学习将视频和文本特征投影到一个共同的潜在空间中。然而,这种潜在空间并不总是最优的,模态之间的差距也难以完全消除。
EMCL方法
EMCL通过引入期望最大化算法,迭代地优化视频与文本的表示。具体来说,EMCL分为两个步骤:
- 期望步骤(E-step):计算当前模型参数下,视频与文本特征的后验概率分布。
- 最大化步骤(M-step):根据后验概率分布,更新模型参数,以最大化似然函数。
通过这种迭代优化,EMCL能够更精确地对齐视频与文本的语义信息,从而生成更紧凑且更具表达力的表示。
项目及技术应用场景
应用场景
EMCL方法在多个视频与语言任务中展现出强大的潜力,包括但不限于:
- 视频与文本检索:通过EMCL生成的紧凑表示,可以显著提升视频与文本之间的检索精度。
- 视频问答:在视频问答任务中,EMCL能够更好地捕捉视频内容与问题之间的语义关联,从而提高回答的准确性。
数据集支持
项目提供了多个常用数据集的预处理版本,包括MSRVTT、MSVD、ActivityNet Captions和DiDeMo,方便用户快速上手实验。
项目特点
技术优势
- 模态对齐:通过EM算法,EMCL能够更精确地对齐视频与文本的语义信息,缩小模态差距。
- 性能提升:在多个基准数据集上,EMCL方法显著提升了视频与文本检索的性能,尤其是在多GPU训练环境下,性能提升更为明显。
- 灵活性:EMCL不仅可以作为独立的训练模块,还可以作为联合训练或推理模块使用,极大地增强了其应用的灵活性。
开源支持
项目代码完全开源,并提供了详细的文档和示例,方便开发者快速集成和使用。此外,项目还提供了预训练模型和数据集的下载链接,进一步降低了使用门槛。
结语
EMCL方法通过创新的期望最大化对比学习框架,为视频与语言表示学习领域带来了新的突破。无论是在学术研究还是实际应用中,EMCL都展现出了巨大的潜力。我们诚邀广大开发者和技术爱好者加入我们的开源社区,共同推动这一前沿技术的发展与应用。
立即访问项目仓库:EMCL GitHub
登录后查看全文
热门项目推荐
GLM-5智谱 AI 正式发布 GLM-5,旨在应对复杂系统工程和长时域智能体任务。Jinja00
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。Python00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
Ascend Extension for PyTorch
Python
353
420
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
暂无简介
Dart
778
194
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759