【NeurIPS'2022】EMCL:紧凑型视频与语言表示的期望最大化对比学习
2024-09-17 10:02:32作者:裘旻烁
项目介绍
在NeurIPS 2022上,我们提出了一种名为**Expectation-Maximization Contrastive Learning (EMCL)**的新方法,用于学习紧凑的视频与语言表示。该方法通过期望最大化(EM)框架改进了传统的对比学习(CL),旨在更有效地缩小视觉与文本表示之间的模态差距,从而提升视频与文本检索的性能。
项目技术分析
技术背景
传统的视频与语言表示学习方法,如CLIP,通过对比学习将视频和文本特征投影到一个共同的潜在空间中。然而,这种潜在空间并不总是最优的,模态之间的差距也难以完全消除。
EMCL方法
EMCL通过引入期望最大化算法,迭代地优化视频与文本的表示。具体来说,EMCL分为两个步骤:
- 期望步骤(E-step):计算当前模型参数下,视频与文本特征的后验概率分布。
- 最大化步骤(M-step):根据后验概率分布,更新模型参数,以最大化似然函数。
通过这种迭代优化,EMCL能够更精确地对齐视频与文本的语义信息,从而生成更紧凑且更具表达力的表示。
项目及技术应用场景
应用场景
EMCL方法在多个视频与语言任务中展现出强大的潜力,包括但不限于:
- 视频与文本检索:通过EMCL生成的紧凑表示,可以显著提升视频与文本之间的检索精度。
- 视频问答:在视频问答任务中,EMCL能够更好地捕捉视频内容与问题之间的语义关联,从而提高回答的准确性。
数据集支持
项目提供了多个常用数据集的预处理版本,包括MSRVTT、MSVD、ActivityNet Captions和DiDeMo,方便用户快速上手实验。
项目特点
技术优势
- 模态对齐:通过EM算法,EMCL能够更精确地对齐视频与文本的语义信息,缩小模态差距。
- 性能提升:在多个基准数据集上,EMCL方法显著提升了视频与文本检索的性能,尤其是在多GPU训练环境下,性能提升更为明显。
- 灵活性:EMCL不仅可以作为独立的训练模块,还可以作为联合训练或推理模块使用,极大地增强了其应用的灵活性。
开源支持
项目代码完全开源,并提供了详细的文档和示例,方便开发者快速集成和使用。此外,项目还提供了预训练模型和数据集的下载链接,进一步降低了使用门槛。
结语
EMCL方法通过创新的期望最大化对比学习框架,为视频与语言表示学习领域带来了新的突破。无论是在学术研究还是实际应用中,EMCL都展现出了巨大的潜力。我们诚邀广大开发者和技术爱好者加入我们的开源社区,共同推动这一前沿技术的发展与应用。
立即访问项目仓库:EMCL GitHub
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217