Ash项目中的默认排序机制优化方案
2025-07-08 09:44:47作者:袁立春Spencer
背景介绍
在Ash框架中,当资源(Resource)配置了全局准备(preparation)排序,同时又通过其他扩展(如JSON API)应用了不同的排序条件时,会出现排序条件拼接的问题。这会导致数据库查询出现不符合预期的结果,甚至在某些数据库(如SQLite)中引发500错误。
问题分析
当前Ash框架在处理排序时存在以下问题:
- 当全局准备(preparation)中定义了排序条件,而API请求中也指定了排序参数时,两者会被简单地拼接在一起
- 在PostgreSQL中,这可能导致返回与请求相反的排序结果
- 在SQLite中,可能导致重复列错误并返回500状态码
解决方案
核心思路
引入default_sort
概念,提供一种机制来定义默认排序规则,同时允许这些规则在必要时被覆盖。这可以通过以下几种方式实现:
- 在准备(preparation)层级添加
default_sort
选项 - 在JSON API路由配置中添加
default_sort
选项 - 实现智能合并策略,确保当显式指定排序时,默认排序可以被忽略或合理合并
技术实现方案
-
新增
Ash.Query.default_sort/2
函数:- 该函数仅在当前查询没有非空排序条件时应用指定的排序
- 否则保持现有排序不变
-
扩展
Ash.Query.build/2
支持:- 允许在准备阶段使用
build(default_sort: [...])
语法 - 使默认排序配置更加简洁直观
- 允许在准备阶段使用
-
关系(Relationship)默认排序支持:
- 在关系DSL中添加
default_sort
选项 - 在构建关系查询时自动应用默认排序
- 实现逻辑:
Ash.Query.sort(relationship.sort) |> Ash.Query.default_sort(relationship.default_sort)
- 在关系DSL中添加
临时解决方案
对于急需解决此问题的开发者,可以通过自定义准备(preparation)实现类似功能:
defmodule MyApp.Preparations.SortDescByOverridableAttribute do
use Ash.Resource.Preparation
@impl true
def init(opts) do
if is_atom(opts[:attribute]), do: {:ok, opts}, else: {:error, "attribute must be an atom!"}
end
@impl true
def prepare(query, %{attribute: attribute}, _context) do
if Keyword.has_key?(query.sort, attribute), do: query, else: Ash.Query.sort(query, [{attribute, :desc}])
end
end
然后在资源中配置:
preparations do
prepare {SortDescByOverridableAttribute, attribute: :inserted_at}
end
技术价值
- 更合理的默认行为:默认排序只在没有显式排序时生效,符合开发者直觉
- 更好的兼容性:避免了不同来源排序条件冲突导致的数据库问题
- 更灵活的配置:支持在多个层级定义默认排序,满足不同场景需求
- 更清晰的代码:通过专用函数和DSL选项,使排序逻辑更加明确
最佳实践建议
- 对于需要强保证排序顺序的资源,优先使用
default_sort
而非普通sort
- 在API设计中,考虑通过文档明确说明哪些字段支持排序覆盖
- 对于复杂排序需求,可以组合使用默认排序和自定义准备(preparation)
- 在测试中应包含默认排序被覆盖的场景,确保行为符合预期
总结
Ash框架的排序机制优化方案通过引入default_sort
概念,解决了多来源排序条件冲突的问题,同时提供了更灵活、更符合直觉的排序配置方式。这一改进不仅提升了框架的稳定性,也为开发者提供了更强大的数据查询控制能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133