如何用Whisper Diarization实现AI语音转写+说话人分离?超简单教程来了!
2026-02-05 04:33:49作者:咎岭娴Homer
想让AI自动识别音频中的说话人身份并生成带角色标签的文字稿吗?Whisper Diarization就是你的终极解决方案!这款基于OpenAI Whisper的开源工具,能同时完成语音识别(ASR)和说话人分离(Speaker Diarization),让多人对话转录变得前所未有的简单高效 ✨
🚀 什么是Whisper Diarization?
Whisper Diarization是一个将语音转文字与说话人识别完美结合的工具链。它的核心原理是:
- 用OpenAI Whisper生成高精度转录文本
- 通过NeMo的MarbleNet进行语音活动检测(VAD)
- 借助TitaNet提取说话人特征并分角色
- 最终输出带时间戳和说话人标签的结构化文字稿
整个流程在diarize.py和helpers.py中实现,无需复杂配置即可上手!
📸 工作流程解析
下面这张图展示了Whisper Diarization的全流程(示意图):
[注:实际项目中未发现图片文件,此处建议添加语音转写+分离流程图]
核心技术模块:
- 语音提取:使用Facebook Demucs分离人声与背景音
- 精准对齐:通过
ctc-forced-aligner校正时间戳 - 角色识别:Nvidia NeMo的TitaNet模型提取说话人特征
- 标点修复:基于标点模型优化句子分割
🔧 超简单安装步骤
前置要求
- Python ≥ 3.10(3.9需手动安装依赖)
- 安装FFMPEG和Cython:
# Ubuntu/Debian
sudo apt update && sudo apt install cython3 ffmpeg
# MacOS (Homebrew)
brew install cython ffmpeg
一键安装
git clone https://gitcode.com/GitHub_Trending/wh/whisper-diarization
cd whisper-diarization
pip install -c constraints.txt -r requirements.txt
💻 3步快速使用指南
基础命令
python diarize.py -a 你的音频文件.opus
高级参数(可选)
# 使用大型模型+指定语言
python diarize.py -a meeting.mp3 --whisper-model large --language zh
# 禁用人声分离(加快速度)
python diarize.py -a podcast.wav --no-stem
# 调整批处理大小(解决内存不足)
python diarize.py -a lecture.flac --batch-size 8
并行处理版本
如果你的电脑显存 ≥ 10GB,试试更快的并行版本:
python diarize_parallel.py -a 长音频.m4a
📊 最佳应用场景
1. 会议记录自动化
→ 自动区分参会人发言,生成结构化会议纪要
2. 播客字幕生成
→ 为多人对话播客添加带 speakers 标签的字幕文件
3. 访谈内容分析
→ 快速提取不同受访者的观点和语录
⚠️ 已知限制与解决方案
-
重叠说话:目前无法处理多人同时发言场景
→ workaround:尽量选择单人轮流发言的音频 -
长音频内存问题:
→ 解决:使用--batch-size 0禁用批处理或拆分音频
🛠️ 项目结构速览
whisper-diarization/
├── diarize.py # 主程序入口
├── diarize_parallel.py # 并行处理版本
├── helpers.py # 核心功能实现
├── diarization/msdd/ # NeMo配置文件
└── tests/assets/ # 测试音频示例
🌟 为什么选择这款工具?
✅ 零代码门槛:无需AI背景,一条命令搞定
✅ 高精度识别:Whisper+NeMo双重加持,转录准确率超95%
✅ 完全免费开源:基于MIT协议,可商用可二次开发
如果你需要处理多人对话音频,Whisper Diarization绝对是2024年最值得尝试的语音工具!现在就克隆项目,体验AI带来的转录革命吧~
注:本文基于whisper-diarization最新版本编写,更多功能请查看项目源码
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化Formily DevTools:让表单开发调试效率提升10倍的神器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246