LLaMA-Factory项目中Qwen2.5-coder-7B模型继续预训练问题解析
2025-05-01 01:18:14作者:贡沫苏Truman
在LLaMA-Factory项目中使用Qwen2.5-coder-7B模型进行继续预训练(Continue Pretraining, CPT)时,开发者可能会遇到一些技术挑战。本文将深入分析这些问题并提供解决方案。
问题背景
继续预训练是大型语言模型微调的重要方式之一,它允许开发者在基础模型上进一步训练以适应特定领域或任务。然而,在LLaMA-Factory项目中,当尝试使用Qwen2.5-coder-7B模型进行CPT时,开发者遇到了"KeyError: 'instruction'"的错误提示。
错误原因分析
该错误通常表明模型期望的数据格式与实际提供的数据格式不匹配。具体来说:
- 模型期望输入数据包含"instruction"字段,但实际数据可能采用了不同的结构
- 配置文件中的模板设置可能不适合Qwen2.5-coder-7B这样的基础模型
- 数据集定义可能没有正确映射到模型期望的输入格式
解决方案
针对这一问题,开发者可以采取以下解决方案:
1. 调整数据集配置
在dataset_info.json文件中,可以明确指定数据字段映射关系。例如:
{
"train_data2": {
"file_name": "train_data2.jsonl",
"columns": {
"prompt": "text"
}
}
}
这种配置明确指定了输入文本对应的字段名,避免了模型期望字段与实际字段不匹配的问题。
2. 修改训练参数
对于Qwen2.5系列模型的继续预训练,建议调整以下参数:
- 适当减小cutoff_len值,避免内存溢出
- 确保template参数设置为"qwen",与模型类型匹配
- 对于基础模型的预训练,stage应设置为"pt"(pretrain)而非"sft"
3. 数据预处理注意事项
进行继续预训练时,需要注意:
- 确保数据格式与模型预期一致
- 对于大规模预训练,建议使用分布式训练策略
- 监控训练过程中的内存使用情况,必要时调整batch size
最佳实践建议
基于社区经验,使用Qwen2.5-coder系列模型进行继续预训练时,建议:
- 从较小规模的模型(如0.5B)开始实验,验证流程后再扩展到更大模型
- 使用BF16混合精度训练以节省显存
- 合理设置gradient_accumulation_steps以在有限硬件条件下实现更大batch size
- 监控训练损失曲线,确保训练过程正常收敛
通过以上调整和优化,开发者可以成功地在LLaMA-Factory项目中对Qwen2.5-coder系列模型进行继续预训练,从而获得适应特定任务或领域的定制化模型。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134