LLMs-from-scratch项目中的Llama3-8B模型微调与内存优化实践
2025-05-01 08:24:42作者:裴麒琰
在LLMs-from-scratch项目中,研究人员尝试将Llama3-8B模型微调为分类器时遇到了几个关键技术挑战。本文将详细分析这些问题及其解决方案,为大型语言模型的微调实践提供参考。
模型输出层精度匹配问题
当尝试修改Llama3-8B模型的输出层为二元分类器时,出现了精度不匹配的错误。原始代码直接将输出层替换为:
model.out_head = torch.nn.Linear(in_features=LLAMA3_CONFIG_8B["emb_dim"], out_features=num_classes)
然而,由于Llama3-8B模型默认使用bfloat16精度初始化以节省内存,这导致了数据类型不兼容。解决方案是确保输出层使用相同的精度:
model.out_head = torch.nn.Linear(in_features=LLAMA3_CONFIG_8B["emb_dim"],
out_features=num_classes,
dtype=torch.bfloat16)
这一修改保证了模型各层的数据类型一致性,避免了精度不匹配导致的运行时错误。
模型加载时的内存优化
训练完成后保存模型,但在加载时遇到了CUDA内存不足的问题。这是因为:
- 初始化空模型已占用约25GB显存
- 加载模型权重时又需要约25GB临时显存
- 在A100(40G)显卡上,峰值需求接近50GB,超出限制
内存优化解决方案
项目提出了三种内存优化方案:
方案一:初始化空权重模型 通过延迟分配内存的方式初始化模型,仅在需要时加载权重。
方案二:惰性加载权重 逐个加载模型权重而非一次性全部加载,显著降低峰值内存需求。
方案三:CPU到GPU的分步传输 这是最实用的解决方案,具体实现如下:
def load_weights_inplace(model, filepath, device):
checkpoint = torch.load(filepath, map_location="cpu")
state_dict = checkpoint["state_dict"] if "state_dict" in checkpoint else checkpoint
with torch.no_grad():
for name, param in model.named_parameters():
if name in state_dict:
param.copy_(state_dict[name].to(device))
del state_dict[name]
del state_dict
load_weights_inplace(model, "review_classifier.pth", device)
model.to(device) # 确保所有参数都在目标设备上
这种方法通过:
- 先将权重加载到CPU内存
- 逐个传输到GPU
- 及时释放不再需要的中间变量 有效控制了显存峰值使用量。
多GPU训练注意事项
当尝试扩展到多GPU训练时,需要注意:
DataParallel已不推荐使用,存在诸多问题- 应使用
DistributedDataParallel进行分布式训练 - 多GPU并行仅适用于训练过程,推理阶段仍需单GPU执行
实践建议
对于大型语言模型微调,建议:
- 始终注意各层的数据类型一致性
- 对于大模型,采用分步加载策略管理内存
- 训练前评估显存需求,必要时采用梯度检查点等技术
- 多GPU训练时选择现代并行策略
这些实践在LLMs-from-scratch项目中得到了验证,为大型语言模型的微调提供了可靠的技术路径。通过合理的内存管理和设备协调,即使在资源受限的环境下也能成功微调Llama3-8B这样的超大模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19