LLMs-from-scratch项目中的Llama3-8B模型微调与内存优化实践
2025-05-01 23:13:52作者:裴麒琰
在LLMs-from-scratch项目中,研究人员尝试将Llama3-8B模型微调为分类器时遇到了几个关键技术挑战。本文将详细分析这些问题及其解决方案,为大型语言模型的微调实践提供参考。
模型输出层精度匹配问题
当尝试修改Llama3-8B模型的输出层为二元分类器时,出现了精度不匹配的错误。原始代码直接将输出层替换为:
model.out_head = torch.nn.Linear(in_features=LLAMA3_CONFIG_8B["emb_dim"], out_features=num_classes)
然而,由于Llama3-8B模型默认使用bfloat16精度初始化以节省内存,这导致了数据类型不兼容。解决方案是确保输出层使用相同的精度:
model.out_head = torch.nn.Linear(in_features=LLAMA3_CONFIG_8B["emb_dim"],
out_features=num_classes,
dtype=torch.bfloat16)
这一修改保证了模型各层的数据类型一致性,避免了精度不匹配导致的运行时错误。
模型加载时的内存优化
训练完成后保存模型,但在加载时遇到了CUDA内存不足的问题。这是因为:
- 初始化空模型已占用约25GB显存
- 加载模型权重时又需要约25GB临时显存
- 在A100(40G)显卡上,峰值需求接近50GB,超出限制
内存优化解决方案
项目提出了三种内存优化方案:
方案一:初始化空权重模型 通过延迟分配内存的方式初始化模型,仅在需要时加载权重。
方案二:惰性加载权重 逐个加载模型权重而非一次性全部加载,显著降低峰值内存需求。
方案三:CPU到GPU的分步传输 这是最实用的解决方案,具体实现如下:
def load_weights_inplace(model, filepath, device):
checkpoint = torch.load(filepath, map_location="cpu")
state_dict = checkpoint["state_dict"] if "state_dict" in checkpoint else checkpoint
with torch.no_grad():
for name, param in model.named_parameters():
if name in state_dict:
param.copy_(state_dict[name].to(device))
del state_dict[name]
del state_dict
load_weights_inplace(model, "review_classifier.pth", device)
model.to(device) # 确保所有参数都在目标设备上
这种方法通过:
- 先将权重加载到CPU内存
- 逐个传输到GPU
- 及时释放不再需要的中间变量 有效控制了显存峰值使用量。
多GPU训练注意事项
当尝试扩展到多GPU训练时,需要注意:
DataParallel已不推荐使用,存在诸多问题- 应使用
DistributedDataParallel进行分布式训练 - 多GPU并行仅适用于训练过程,推理阶段仍需单GPU执行
实践建议
对于大型语言模型微调,建议:
- 始终注意各层的数据类型一致性
- 对于大模型,采用分步加载策略管理内存
- 训练前评估显存需求,必要时采用梯度检查点等技术
- 多GPU训练时选择现代并行策略
这些实践在LLMs-from-scratch项目中得到了验证,为大型语言模型的微调提供了可靠的技术路径。通过合理的内存管理和设备协调,即使在资源受限的环境下也能成功微调Llama3-8B这样的超大模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350