Polars滚动计算中的浮点数精度问题分析
2025-05-04 06:43:37作者:瞿蔚英Wynne
在数据分析领域,滚动计算(rolling calculation)是一种常见操作,用于计算时间序列数据在滑动窗口内的统计量。Polars作为一款高性能的Rust实现的数据处理库,其滚动计算功能在实际应用中却可能遇到一些意想不到的精度问题。
问题现象
当用户对数据进行立方运算(pow(3))后执行滚动均值计算时,发现结果与预期不符。具体表现为:
- 当数据量较大时(如超过3600行),滚动均值计算结果出现明显偏差
- 直接计算最后100行的均值与滚动计算结果不一致
- 问题在数据中存在极大值(如-34321.028632)和极小值(如0.704235)交替出现时尤为明显
问题根源
经过分析,这个问题源于Polars滚动计算的核心实现机制:
- 增量计算算法:Polars为了提高性能,采用增量计算方式维护滑动窗口的和值,而非每次重新计算整个窗口
- 浮点数精度累积:当窗口滑动时,新值加入窗口的同时旧值被减去,这种操作在浮点数运算中会导致精度损失
- 数值跨度影响:当数据中存在极大值和极小值交替出现时(特别是经过pow(3)放大后),浮点数精度问题会被显著放大
技术细节
Polars的滚动计算实现采用了以下关键步骤:
- 初始化时计算第一个窗口的完整和
- 滑动窗口时,通过"加新值减旧值"的方式更新窗口和
- 根据窗口和计算均值
这种实现方式在大多数情况下表现良好,但当遇到以下情况时会出现问题:
- 新加入值与当前和值数量级差异巨大
- 被减去的旧值与当前和值数量级相近
- 连续多次加减操作导致误差累积
解决方案探讨
针对这类问题,业界已有多种解决方案:
- Kahan求和算法:一种补偿求和算法,可以显著减少浮点数求和中的累积误差
- 定期重新计算:在检测到潜在精度问题时,定期重新计算完整窗口和
- 高精度数据类型:使用更高精度的浮点数类型进行计算(如f128)
实际影响评估
虽然这是一个浮点数精度问题,但在实际应用中需要注意:
- 金融、科学计算等对精度要求高的场景需要特别关注
- 数据中存在极端值或经过非线性变换(如pow(3))时风险较高
- 对于常规数据分析,这种误差通常在可接受范围内
最佳实践建议
对于Polars用户,在使用滚动计算时建议:
- 对数据进行标准化处理,减少数值跨度
- 在精度关键场景,考虑分段计算或验证关键结果
- 关注Polars后续版本对此问题的改进
- 必要时可考虑暂时使用其他库(如pandas)处理极端情况
总结
Polars的滚动计算性能优势明显,但在极端数值情况下可能存在精度问题。理解这一问题的根源有助于开发者在实际应用中做出合理选择,平衡性能与精度需求。随着Polars的持续发展,这一问题有望得到更好的解决。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1