Polars滚动计算中的浮点数精度问题分析
2025-05-04 11:16:45作者:瞿蔚英Wynne
在数据分析领域,滚动计算(rolling calculation)是一种常见操作,用于计算时间序列数据在滑动窗口内的统计量。Polars作为一款高性能的Rust实现的数据处理库,其滚动计算功能在实际应用中却可能遇到一些意想不到的精度问题。
问题现象
当用户对数据进行立方运算(pow(3))后执行滚动均值计算时,发现结果与预期不符。具体表现为:
- 当数据量较大时(如超过3600行),滚动均值计算结果出现明显偏差
- 直接计算最后100行的均值与滚动计算结果不一致
- 问题在数据中存在极大值(如-34321.028632)和极小值(如0.704235)交替出现时尤为明显
问题根源
经过分析,这个问题源于Polars滚动计算的核心实现机制:
- 增量计算算法:Polars为了提高性能,采用增量计算方式维护滑动窗口的和值,而非每次重新计算整个窗口
- 浮点数精度累积:当窗口滑动时,新值加入窗口的同时旧值被减去,这种操作在浮点数运算中会导致精度损失
- 数值跨度影响:当数据中存在极大值和极小值交替出现时(特别是经过pow(3)放大后),浮点数精度问题会被显著放大
技术细节
Polars的滚动计算实现采用了以下关键步骤:
- 初始化时计算第一个窗口的完整和
- 滑动窗口时,通过"加新值减旧值"的方式更新窗口和
- 根据窗口和计算均值
这种实现方式在大多数情况下表现良好,但当遇到以下情况时会出现问题:
- 新加入值与当前和值数量级差异巨大
- 被减去的旧值与当前和值数量级相近
- 连续多次加减操作导致误差累积
解决方案探讨
针对这类问题,业界已有多种解决方案:
- Kahan求和算法:一种补偿求和算法,可以显著减少浮点数求和中的累积误差
- 定期重新计算:在检测到潜在精度问题时,定期重新计算完整窗口和
- 高精度数据类型:使用更高精度的浮点数类型进行计算(如f128)
实际影响评估
虽然这是一个浮点数精度问题,但在实际应用中需要注意:
- 金融、科学计算等对精度要求高的场景需要特别关注
- 数据中存在极端值或经过非线性变换(如pow(3))时风险较高
- 对于常规数据分析,这种误差通常在可接受范围内
最佳实践建议
对于Polars用户,在使用滚动计算时建议:
- 对数据进行标准化处理,减少数值跨度
- 在精度关键场景,考虑分段计算或验证关键结果
- 关注Polars后续版本对此问题的改进
- 必要时可考虑暂时使用其他库(如pandas)处理极端情况
总结
Polars的滚动计算性能优势明显,但在极端数值情况下可能存在精度问题。理解这一问题的根源有助于开发者在实际应用中做出合理选择,平衡性能与精度需求。随着Polars的持续发展,这一问题有望得到更好的解决。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217