探索高效文本搜索:SearchArray —— 在Pandas中构建你的搜索引擎
2024-06-05 21:40:38作者:凌朦慧Richard
在数据科学的世界里,快速且准确的文本搜索是一项至关重要的任务。SearchArray是一个创新的Python库,它将Pandas字符串列转化为术语索引,使你能够对短语和单个词汇进行高效的TF-IDF或BM25评分,就如同使用Lucene一样,但更加融入Pandas的数据操作流程。
1、项目介绍
SearchArray的设计目标是简化Python数据栈中的词汇搜索过程。通过这个库,你可以直接在Pandas数据框中创建一个搜索索引,就像添加一个新列一样简单。这种集成方式为实验性搜索和候选结果重排序提供了极大的便利。
from searcharray import SearchArray
df['title_indexed'] = SearchArray.index(df['title'])
np.sort(df['title_indexed'].array.score('Cat'))
这只是一个简单的示例,却展示了SearchArray的强大之处:只需几行代码,就能让你对电影标题进行搜索评分。
2、项目技术分析
SearchArray的核心在于其内存效率和快速搜索。它的索引设计得既节省空间又运行迅速,允许你在离线评估时处理适度规模(100倍到100万条文档)的数据集,并在服务环境中快速处理数千条记录。
此外,SearchArray不局限于内置的分词器,允许用户自定义分词策略以适应各种需求。这意味着你可以充分利用Python现有的自然语言处理库来实现超越Lucene的分词效果。
3、项目及技术应用场景
- 实验与原型构建:在无需引入复杂外部系统的情况下,利用Pandas的数据处理能力进行搜索算法原型设计和测试。
- 搜索结果重排名:从基础搜索引擎获取前N条结果后,用SearchArray进行二次筛选和重新排序。
- 数据分析中的文本检索:结合其他数据特征,如时间戳等,进行更复杂的查询和评分。
例如:
df['score'] = df['title_indexed'].score('Cat') * df['hrs_into_past']
这样的表达式可以将搜索得分与时间因素相结合,提供更为智能的搜索体验。
4、项目特点
- Pandas原生体验:无缝集成Pandas,如同处理任何其他列一样轻松搜索。
- 高度可定制化:支持自定义分词器,可模拟和扩展传统搜索引擎的分词功能。
- 轻量级和高性能:专为小型数据集设计,适合实验性和实时场景。
- 易于迁移:在Pandas中构建的搜索逻辑能相对直观地迁移到大型搜索引擎如Solr或Elasticsearch。
要深入了解SearchArray,可以访问官方指南和离线实验的Colab笔记本。
总的来说,SearchArray为Python数据科学家和机器学习工程师提供了一个强大而灵活的工具,用于实现文本搜索的创新解决方案。无论你是初学者还是经验丰富的开发者,都能在SearchArray中找到方便快捷的文本搜索之道。现在就尝试pip install searcharray,开启你的Pandas搜索之旅吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218