探索高效文本搜索:SearchArray —— 在Pandas中构建你的搜索引擎
2024-06-05 21:40:38作者:凌朦慧Richard
在数据科学的世界里,快速且准确的文本搜索是一项至关重要的任务。SearchArray是一个创新的Python库,它将Pandas字符串列转化为术语索引,使你能够对短语和单个词汇进行高效的TF-IDF或BM25评分,就如同使用Lucene一样,但更加融入Pandas的数据操作流程。
1、项目介绍
SearchArray的设计目标是简化Python数据栈中的词汇搜索过程。通过这个库,你可以直接在Pandas数据框中创建一个搜索索引,就像添加一个新列一样简单。这种集成方式为实验性搜索和候选结果重排序提供了极大的便利。
from searcharray import SearchArray
df['title_indexed'] = SearchArray.index(df['title'])
np.sort(df['title_indexed'].array.score('Cat'))
这只是一个简单的示例,却展示了SearchArray的强大之处:只需几行代码,就能让你对电影标题进行搜索评分。
2、项目技术分析
SearchArray的核心在于其内存效率和快速搜索。它的索引设计得既节省空间又运行迅速,允许你在离线评估时处理适度规模(100倍到100万条文档)的数据集,并在服务环境中快速处理数千条记录。
此外,SearchArray不局限于内置的分词器,允许用户自定义分词策略以适应各种需求。这意味着你可以充分利用Python现有的自然语言处理库来实现超越Lucene的分词效果。
3、项目及技术应用场景
- 实验与原型构建:在无需引入复杂外部系统的情况下,利用Pandas的数据处理能力进行搜索算法原型设计和测试。
- 搜索结果重排名:从基础搜索引擎获取前N条结果后,用SearchArray进行二次筛选和重新排序。
- 数据分析中的文本检索:结合其他数据特征,如时间戳等,进行更复杂的查询和评分。
例如:
df['score'] = df['title_indexed'].score('Cat') * df['hrs_into_past']
这样的表达式可以将搜索得分与时间因素相结合,提供更为智能的搜索体验。
4、项目特点
- Pandas原生体验:无缝集成Pandas,如同处理任何其他列一样轻松搜索。
- 高度可定制化:支持自定义分词器,可模拟和扩展传统搜索引擎的分词功能。
- 轻量级和高性能:专为小型数据集设计,适合实验性和实时场景。
- 易于迁移:在Pandas中构建的搜索逻辑能相对直观地迁移到大型搜索引擎如Solr或Elasticsearch。
要深入了解SearchArray,可以访问官方指南和离线实验的Colab笔记本。
总的来说,SearchArray为Python数据科学家和机器学习工程师提供了一个强大而灵活的工具,用于实现文本搜索的创新解决方案。无论你是初学者还是经验丰富的开发者,都能在SearchArray中找到方便快捷的文本搜索之道。现在就尝试pip install searcharray,开启你的Pandas搜索之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134