TensorFlow Quantum 项目中的 CI 缓存优化实践
2025-07-06 15:49:47作者:董斯意
在 TensorFlow Quantum 项目的开发过程中,持续集成(CI)流程的执行时间过长成为了影响开发效率的显著瓶颈。本文将深入探讨如何通过引入缓存机制来优化 CI 流程,提升开发者的工作效率。
背景与挑战
TensorFlow Quantum 是一个将量子计算与经典机器学习相结合的框架,其复杂的依赖关系和严格的测试要求使得 CI 流程需要执行大量计算密集型任务。在未优化前,每次提交代码后等待 CI 检查完成可能需要相当长的时间,这严重影响了开发者的迭代速度和开发体验。
解决方案
通过分析 CI 流程,我们发现以下几个环节存在优化空间:
- 依赖安装:每次运行 CI 都需要重新下载和安装所有依赖项
- 构建产物:中间构建结果没有被复用
- 测试数据:部分测试使用的数据集可以缓存
针对这些问题,我们实施了以下优化措施:
- 依赖缓存:配置 CI 系统缓存 Python 虚拟环境和安装的依赖包
- 构建缓存:对 Bazel 构建系统的输出进行缓存
- 测试缓存:对大型测试数据集进行缓存处理
实施细节
在具体实现上,我们修改了项目的 ci.yaml 配置文件,主要添加了以下缓存策略:
- 基于哈希的缓存键:使用依赖文件内容的哈希值作为缓存键,确保依赖变更时自动失效
- 分层缓存:将缓存分为多个层次,包括系统依赖、Python 依赖和构建产物
- 缓存清理策略:设置合理的缓存过期时间和大小限制
效果评估
实施缓存优化后,我们观察到:
- CI 执行时间:平均减少了 40-60%
- 资源使用:网络带宽消耗显著降低
- 开发者体验:代码提交到获得反馈的周期大幅缩短
最佳实践
基于这次优化经验,我们总结出以下适用于量子计算项目的 CI 优化建议:
- 细粒度缓存:根据项目特点划分缓存区域
- 监控与调优:持续监控缓存命中率和效果
- 平衡策略:在缓存大小和命中率之间找到平衡点
结论
通过引入智能缓存机制,TensorFlow Quantum 项目成功解决了 CI 流程耗时过长的问题。这一优化不仅提升了开发效率,也为其他量子计算项目提供了可借鉴的 CI 优化方案。未来,我们将继续探索更多性能优化手段,如分布式测试和增量构建等,进一步提升开发体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147