解决JeecgBoot项目Docker打包失败问题
背景介绍
在使用JeecgBoot开源项目进行Docker容器化部署时,很多开发者会遇到打包失败的问题。本文将以一个典型错误案例为基础,详细分析问题原因并提供完整的解决方案。
问题现象
开发者在Ubuntu 24系统环境下,使用JDK 1.8和Git 2.43,尝试通过Docker Compose对JeecgBoot项目进行容器化打包时遇到了构建失败。错误信息显示系统无法找到目标jar文件/target/jeecg-system-start-3.7.0.jar。
根本原因分析
-
缺少Maven构建工具:JeecgBoot是一个基于Java的Spring Boot项目,必须通过Maven或Gradle进行项目构建后才能生成可执行的jar包。错误信息中明确显示系统没有安装Maven。
-
构建顺序错误:Docker构建过程直接尝试复制目标jar文件,但在此之前没有执行Maven构建步骤,导致目标文件不存在。
-
Dockerfile配置问题:Dockerfile中直接引用了未生成的jar文件路径,而没有包含构建步骤。
完整解决方案
1. 安装必要工具
首先需要安装项目构建所需的工具链:
# 安装Maven
sudo apt-get install maven
2. 项目构建流程
正确的项目构建应该遵循以下顺序:
- 克隆项目代码
- 使用Maven构建项目
- 执行Docker构建
# 克隆项目
git clone <项目仓库地址>
# 进入项目目录
cd jeecg-boot
# 使用Maven构建项目
mvn clean package
3. 修改Docker配置
建议对Docker配置进行以下优化:
# 使用多阶段构建
FROM maven:3.6.3-jdk-8 AS build
WORKDIR /app
COPY . .
RUN mvn clean package
FROM anapsix/alpine-java:8_server-jre_unlimited
COPY --from=build /app/jeecg-module-system/jeecg-system-start/target/jeecg-system-start-*.jar /jeecg-boot/jeecg-system-start.jar
WORKDIR /jeecg-boot
EXPOSE 2222
ENTRYPOINT ["java", "-jar", "jeecg-system-start.jar"]
4. 优化docker-compose.yml
services:
jeecg-boot-system:
build: .
restart: on-failure
container_name: jeecg-boot-system
ports:
- 8080:2222
networks:
- jeecg_boot
networks:
jeecg_boot:
driver: bridge
最佳实践建议
-
使用CI/CD流程:建议将构建和部署过程集成到CI/CD流水线中,确保每次代码变更都能自动构建和测试。
-
版本管理:在Docker构建过程中使用明确的版本标签,避免使用latest标签。
-
资源优化:对于Java应用,可以添加JVM参数优化内存使用:
ENTRYPOINT ["java", "-Xms256m", "-Xmx512m", "-jar", "jeecg-system-start.jar"] -
健康检查:在docker-compose中添加健康检查:
healthcheck: test: ["CMD", "curl", "-f", "http://localhost:2222/actuator/health"] interval: 30s timeout: 10s retries: 3
总结
JeecgBoot项目的Docker化部署需要遵循正确的构建顺序,先使用Maven构建项目生成可执行jar,再进行Docker镜像构建。通过本文提供的解决方案和最佳实践,开发者可以顺利完成项目的容器化部署,并为生产环境做好准备。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00