解决JeecgBoot项目Docker打包失败问题
背景介绍
在使用JeecgBoot开源项目进行Docker容器化部署时,很多开发者会遇到打包失败的问题。本文将以一个典型错误案例为基础,详细分析问题原因并提供完整的解决方案。
问题现象
开发者在Ubuntu 24系统环境下,使用JDK 1.8和Git 2.43,尝试通过Docker Compose对JeecgBoot项目进行容器化打包时遇到了构建失败。错误信息显示系统无法找到目标jar文件/target/jeecg-system-start-3.7.0.jar。
根本原因分析
-
缺少Maven构建工具:JeecgBoot是一个基于Java的Spring Boot项目,必须通过Maven或Gradle进行项目构建后才能生成可执行的jar包。错误信息中明确显示系统没有安装Maven。
-
构建顺序错误:Docker构建过程直接尝试复制目标jar文件,但在此之前没有执行Maven构建步骤,导致目标文件不存在。
-
Dockerfile配置问题:Dockerfile中直接引用了未生成的jar文件路径,而没有包含构建步骤。
完整解决方案
1. 安装必要工具
首先需要安装项目构建所需的工具链:
# 安装Maven
sudo apt-get install maven
2. 项目构建流程
正确的项目构建应该遵循以下顺序:
- 克隆项目代码
- 使用Maven构建项目
- 执行Docker构建
# 克隆项目
git clone <项目仓库地址>
# 进入项目目录
cd jeecg-boot
# 使用Maven构建项目
mvn clean package
3. 修改Docker配置
建议对Docker配置进行以下优化:
# 使用多阶段构建
FROM maven:3.6.3-jdk-8 AS build
WORKDIR /app
COPY . .
RUN mvn clean package
FROM anapsix/alpine-java:8_server-jre_unlimited
COPY --from=build /app/jeecg-module-system/jeecg-system-start/target/jeecg-system-start-*.jar /jeecg-boot/jeecg-system-start.jar
WORKDIR /jeecg-boot
EXPOSE 2222
ENTRYPOINT ["java", "-jar", "jeecg-system-start.jar"]
4. 优化docker-compose.yml
services:
jeecg-boot-system:
build: .
restart: on-failure
container_name: jeecg-boot-system
ports:
- 8080:2222
networks:
- jeecg_boot
networks:
jeecg_boot:
driver: bridge
最佳实践建议
-
使用CI/CD流程:建议将构建和部署过程集成到CI/CD流水线中,确保每次代码变更都能自动构建和测试。
-
版本管理:在Docker构建过程中使用明确的版本标签,避免使用latest标签。
-
资源优化:对于Java应用,可以添加JVM参数优化内存使用:
ENTRYPOINT ["java", "-Xms256m", "-Xmx512m", "-jar", "jeecg-system-start.jar"] -
健康检查:在docker-compose中添加健康检查:
healthcheck: test: ["CMD", "curl", "-f", "http://localhost:2222/actuator/health"] interval: 30s timeout: 10s retries: 3
总结
JeecgBoot项目的Docker化部署需要遵循正确的构建顺序,先使用Maven构建项目生成可执行jar,再进行Docker镜像构建。通过本文提供的解决方案和最佳实践,开发者可以顺利完成项目的容器化部署,并为生产环境做好准备。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00