JeecgBoot项目Docker打包失败原因分析与解决方案
问题背景
在使用JeecgBoot开源项目进行Docker打包时,开发者在Ubuntu 24系统环境下遇到了构建失败的问题。项目采用Java 8开发,数据库使用Oracle,Redis未使用Docker镜像。
错误现象
执行docker-compose up -d命令后,系统报出以下关键错误信息:
failed to solve: failed to compute cache key: failed to calculate checksum of ref e6c37338-c0a0-437a-9bef-e8594f9a3acf::urjji7l5s6u0fvny6jtaycd8w: "/target/jeecg-system-start-3.7.0.jar": not found
根本原因分析
-
缺少Maven构建工具:JeecgBoot是一个基于Java的Spring Boot项目,需要先通过Maven进行编译打包,生成可执行的JAR文件后才能进行Docker镜像构建。
-
Docker构建流程问题:Dockerfile中直接引用了
./target/jeecg-system-start-3.7.0.jar文件,但在没有Maven构建的情况下,该文件不存在。 -
版本兼容性问题:虽然这不是导致本次错误的主要原因,但需要注意Docker Compose文件中的
version: '2'已被标记为过时,建议更新。
解决方案
完整构建步骤
-
安装必要工具
sudo apt-get install maven -
使用Maven编译项目
mvn clean package -
验证构建结果 检查
target目录下是否生成了jeecg-system-start-3.7.0.jar文件 -
执行Docker构建
docker-compose up -d
优化建议
-
更新Docker Compose配置:移除过时的version声明
services: jeecg-boot-system: build: context: ./jeecg-module-system/jeecg-system-start dockerfile: Dockerfile restart: on-failure container_name: jeecg-boot-system image: jeecg-boot-system hostname: jeecg-boot-system ports: - 8080:2222 networks: - jeecg-boot networks: jeecg-boot: name: jeecg_boot -
考虑使用多阶段构建:可以修改Dockerfile,将Maven构建和Docker构建整合在一起
技术原理
Java项目的Docker化通常需要两个阶段:
- 编译阶段:使用Maven或Gradle等构建工具将源代码编译打包成可执行的JAR/WAR文件
- 容器化阶段:将生成的构建产物打包到Docker镜像中
JeecgBoot作为典型的Spring Boot项目,遵循这一标准流程。直接跳过编译阶段会导致Docker构建时找不到必要的构建产物,从而出现上述错误。
总结
对于Java项目的Docker化部署,必须确保先完成项目的编译打包过程。JeecgBoot作为Maven项目,需要先通过mvn package命令生成JAR文件,才能进行后续的Docker镜像构建。这一流程是Java项目容器化的标准实践,理解这一点可以避免类似的构建失败问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00