AWS Golden AMI Pipeline 项目教程
项目介绍
AWS Golden AMI Pipeline 是一个开源项目,旨在帮助用户创建、分发、定期评估和停用 Golden AMI(黄金镜像)。Golden AMI 是一种经过标准化和优化的 Amazon 机器镜像,通常用于确保一致性和安全性。该项目提供了一套 CloudFormation 模板和详细的步骤指南,以简化 Golden AMI 管道的设置和管理。
项目快速启动
步骤 1:克隆项目仓库
首先,克隆 AWS Golden AMI Pipeline 项目仓库到本地:
git clone https://github.com/aws-samples/aws-golden-ami-pipeline-sample.git
步骤 2:设置 CloudFormation 模板
进入项目目录并使用提供的 CloudFormation 模板来设置 Golden AMI 管道:
cd aws-golden-ami-pipeline-sample
aws cloudformation create-stack --stack-name GoldenAMIPipeline --template-body file://template.yaml --capabilities CAPABILITY_NAMED_IAM
步骤 3:按照指南进行配置
参考项目仓库中的 README.md 文件,按照步骤指南进行详细配置和测试。
应用案例和最佳实践
案例 1:多账户环境中的 AMI 分发
在多账户环境中,Golden AMI Pipeline 可以确保所有账户使用相同的 AMI,从而提高一致性和安全性。通过 AWS Organizations 和 AWS Service Catalog,可以轻松管理和分发 AMI。
案例 2:持续的 AMI 漏洞评估
结合 Amazon Inspector 和 Golden AMI Pipeline,可以实现对 AMI 的持续漏洞评估和修复,确保 AMI 始终符合安全标准。
最佳实践
- 标准化和优化:确保 Golden AMI 经过标准化和优化,以提高性能和安全性。
 - 自动化管理:利用 CloudFormation 和 AWS Systems Manager 实现 AMI 管理的自动化。
 - 持续监控和评估:定期使用 Amazon Inspector 等工具对 AMI 进行漏洞评估。
 
典型生态项目
AWS Systems Manager
AWS Systems Manager 提供了一系列管理工具,用于自动化和简化 AWS 资源的管理,与 Golden AMI Pipeline 结合使用,可以实现更高效的管理和维护。
AWS Service Catalog
AWS Service Catalog 允许组织创建和管理批准的产品列表,与 Golden AMI Pipeline 结合使用,可以确保所有账户使用经过批准的 AMI。
Amazon Inspector
Amazon Inspector 是一个自动化安全评估服务,用于提高 AWS 资源的安全性和合规性,与 Golden AMI Pipeline 结合使用,可以实现持续的安全评估和修复。
通过这些生态项目的结合使用,可以构建一个全面、高效和安全的 AMI 管理体系。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00