Google Generative AI Python SDK 中安全设置的正确使用方法
前言
在使用Google的生成式AI服务时,安全设置(Safety Settings)是一个非常重要的功能,它可以帮助开发者控制模型输出的内容安全性。然而,在Google Generative AI Python SDK的使用过程中,开发者可能会遇到安全设置相关的问题。本文将详细介绍如何正确配置多类别安全设置,避免常见的错误。
安全设置的基本概念
安全设置允许开发者针对不同类型的潜在有害内容设置过滤阈值。Google的生成式AI模型支持以下几种安全类别:
- 仇恨言论(HARM_CATEGORY_HATE_SPEECH)
- 危险内容(HARM_CATEGORY_DANGEROUS_CONTENT)
- 骚扰内容(HARM_CATEGORY_HARASSMENT)
- 露骨性内容(HARM_CATEGORY_SEXUALLY_EXPLICIT)
- 公民诚信(HARM_CATEGORY_CIVIC_INTEGRITY)
对于每个类别,开发者可以设置不同的阻断阈值(BLOCK_THRESHOLD),从完全阻断(BLOCK_ONLY_HIGH)到不阻断(BLOCK_NONE)不等。
常见问题分析
在使用Google Generative AI Python SDK时,开发者可能会遇到以下错误:
"400 INVALID_ARGUMENT. {'error': {'code': 400, 'message': 'Multiple safety settings with the same category.', 'status': 'INVALID_ARGUMENT'}}"
这个错误通常发生在尝试设置多个安全类别时,但实际上各个类别是不同的。造成这个问题的根本原因是使用了错误来源的安全设置类。
正确的实现方式
要正确配置多类别安全设置,需要注意以下几点:
-
导入正确的模块:必须使用
google.genai.types中的SafetySetting类,而不是vertexai.generative_models中的同名类。 -
正确的参数格式:安全类别和阈值需要以字符串形式传递。
以下是正确的实现示例:
from google.genai.types import SafetySetting
safety_settings = [
SafetySetting(
category="HARM_CATEGORY_HATE_SPEECH",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_DANGEROUS_CONTENT",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_HARASSMENT",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_SEXUALLY_EXPLICIT",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_CIVIC_INTEGRITY",
threshold="BLOCK_NONE",
),
]
最佳实践建议
-
模块导入一致性:确保项目中只使用一个来源的安全设置类,避免混用不同SDK中的同名类。
-
参数验证:在开发过程中,可以先测试单个安全设置,确认无误后再添加多个设置。
-
错误处理:对API调用进行适当的错误捕获和处理,特别是对于400错误。
-
文档参考:虽然本文提供了基本用法,但开发时仍应参考官方文档获取最新的参数说明和限制。
总结
正确配置生成式AI的安全设置对于构建负责任的应用至关重要。通过使用正确的模块和参数格式,开发者可以充分利用Google Generative AI Python SDK提供的安全控制功能,同时避免常见的配置错误。记住关键点:使用google.genai.types中的类,并以字符串形式传递参数,这样就能顺利实现多类别安全设置。
希望本文能帮助开发者更好地理解和使用Google生成式AI的安全功能,构建更安全、可靠的AI应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00