Google Generative AI Python SDK 中安全设置的正确使用方法
前言
在使用Google的生成式AI服务时,安全设置(Safety Settings)是一个非常重要的功能,它可以帮助开发者控制模型输出的内容安全性。然而,在Google Generative AI Python SDK的使用过程中,开发者可能会遇到安全设置相关的问题。本文将详细介绍如何正确配置多类别安全设置,避免常见的错误。
安全设置的基本概念
安全设置允许开发者针对不同类型的潜在有害内容设置过滤阈值。Google的生成式AI模型支持以下几种安全类别:
- 仇恨言论(HARM_CATEGORY_HATE_SPEECH)
- 危险内容(HARM_CATEGORY_DANGEROUS_CONTENT)
- 骚扰内容(HARM_CATEGORY_HARASSMENT)
- 露骨性内容(HARM_CATEGORY_SEXUALLY_EXPLICIT)
- 公民诚信(HARM_CATEGORY_CIVIC_INTEGRITY)
对于每个类别,开发者可以设置不同的阻断阈值(BLOCK_THRESHOLD),从完全阻断(BLOCK_ONLY_HIGH)到不阻断(BLOCK_NONE)不等。
常见问题分析
在使用Google Generative AI Python SDK时,开发者可能会遇到以下错误:
"400 INVALID_ARGUMENT. {'error': {'code': 400, 'message': 'Multiple safety settings with the same category.', 'status': 'INVALID_ARGUMENT'}}"
这个错误通常发生在尝试设置多个安全类别时,但实际上各个类别是不同的。造成这个问题的根本原因是使用了错误来源的安全设置类。
正确的实现方式
要正确配置多类别安全设置,需要注意以下几点:
-
导入正确的模块:必须使用
google.genai.types中的SafetySetting类,而不是vertexai.generative_models中的同名类。 -
正确的参数格式:安全类别和阈值需要以字符串形式传递。
以下是正确的实现示例:
from google.genai.types import SafetySetting
safety_settings = [
SafetySetting(
category="HARM_CATEGORY_HATE_SPEECH",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_DANGEROUS_CONTENT",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_HARASSMENT",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_SEXUALLY_EXPLICIT",
threshold="BLOCK_NONE",
),
SafetySetting(
category="HARM_CATEGORY_CIVIC_INTEGRITY",
threshold="BLOCK_NONE",
),
]
最佳实践建议
-
模块导入一致性:确保项目中只使用一个来源的安全设置类,避免混用不同SDK中的同名类。
-
参数验证:在开发过程中,可以先测试单个安全设置,确认无误后再添加多个设置。
-
错误处理:对API调用进行适当的错误捕获和处理,特别是对于400错误。
-
文档参考:虽然本文提供了基本用法,但开发时仍应参考官方文档获取最新的参数说明和限制。
总结
正确配置生成式AI的安全设置对于构建负责任的应用至关重要。通过使用正确的模块和参数格式,开发者可以充分利用Google Generative AI Python SDK提供的安全控制功能,同时避免常见的配置错误。记住关键点:使用google.genai.types中的类,并以字符串形式传递参数,这样就能顺利实现多类别安全设置。
希望本文能帮助开发者更好地理解和使用Google生成式AI的安全功能,构建更安全、可靠的AI应用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00