Google Generative AI Python SDK 中模型微调功能的使用指南
2025-07-03 15:14:37作者:魏侃纯Zoe
问题背景
在使用Google Generative AI Python SDK进行Gemini模型微调时,开发者可能会遇到导入错误。本文将详细介绍正确的使用方法,帮助开发者顺利实现模型微调功能。
核心问题解析
在Python代码中直接使用from genai import create_tuned_model
会导致导入错误,这是因为:
- 正确的包名是
google.generativeai
,而非genai
genai
是官方文档中常用的模块别名,但需要先正确导入
正确使用方法
1. 安装与导入
首先确保已安装最新版的SDK:
pip install -q -U google-generativeai
然后正确导入模块:
import google.generativeai as genai
2. API密钥配置
在使用任何功能前,必须先配置API密钥:
import os
genai.configure(api_key=os.environ["API_KEY"])
3. 模型微调实现
以下是完整的模型微调实现流程:
# 准备训练数据
training_data = df # 假设df是已处理好的DataFrame
# 设置基础模型
base_model = "models/gemini-1.5-flash-001-tuning"
# 创建微调操作
operation = genai.create_tuned_model(
display_name="自定义模型名称",
source_model=base_model,
epoch_count=20,
batch_size=4,
learning_rate=0.001,
training_data=training_data,
)
# 监控训练过程
for status in operation.wait_bar():
time.sleep(10)
# 获取结果
result = operation.result()
4. 使用微调后的模型
微调完成后,可以使用新模型进行推理:
# 初始化微调后的模型
custom_model = genai.GenerativeModel(model_name=result.name)
# 生成内容
response = custom_model.generate_content("输入提示词")
print(response.text)
技术要点
- 训练数据格式:训练数据应为DataFrame格式,包含输入和预期的输出列
- 超参数设置:
- epoch_count:训练轮数
- batch_size:批处理大小
- learning_rate:学习率
- 监控训练:使用operation.wait_bar()可以方便地监控训练进度
- 模型保存:微调后的模型会自动保存,可以通过result.name获取模型标识
最佳实践建议
- 在微调前,先使用基础模型测试效果,建立基准
- 从小规模数据开始,逐步增加数据量和训练轮数
- 监控损失曲线,避免过拟合
- 保存重要的微调参数和结果,便于后续比较
通过以上方法,开发者可以充分利用Google Generative AI Python SDK的模型微调功能,打造更适合特定任务的AI模型。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193