SLSA框架中多轨道规范的命名与文档结构优化
在软件开发供应链安全领域,SLSA框架作为提升软件制品安全性的重要标准,其规范文档的结构清晰性直接影响开发者的理解和实施。随着SLSA 1.2版本的推进,项目团队正在对文档中的命名规范和结构进行重要优化,以支持框架的多轨道发展。
当前命名规范存在的问题
现有SLSA规范文档中存在一些命名不一致的情况,主要体现在几个关键术语上:
- "requirements"(需求)一词目前特指构建轨道的要求
- "provenance"(来源证明)特指构建来源证明
- "verifying-systems"(验证系统)特指验证构建器
这种单一轨道的命名方式已经无法适应SLSA框架向多轨道发展的需求。特别值得注意的是,"provenance"文件的URL路径需要保持稳定,因为现有的证明断言类型已经指向该路径。
文档结构调整方案
针对这些问题,项目团队提出了几种优化方案:
方案一:精简层级描述
移除levels.md文件中各等级描述中的"requirements"行,要求用户直接查阅build-requirements.md文件而非依赖简化的表格。这种方案可以减少文档重复,确保信息的单一来源。
方案二:创建轨道中心页面
- 建立专门的"tracks"页面,概述各轨道基础知识并链接到相关文档
- 将levels.md内容迁移至build-track-basics.md(同时移除需求部分)
- 为源码轨道创建对应的source-track-basics.md
方案三:建立概念中心页面
为关键概念(如provenance)创建专门的着陆页面。现有URL可以指向这些着陆页面,而页面本身则解释整体概念并链接到各轨道的具体实现。例如,provenance的着陆页可以说明:"如需in-toto断言类型请点击此处",同时提供各轨道实现的链接。
多轨道语义一致性原则
在讨论过程中,团队确立了重要原则:跨轨道使用的术语应保持语义一致性。如果一个术语在不同轨道中有细微差异,要么确保其核心语义一致(从而需要顶层页面),要么使用不同术语以避免混淆。以provenance为例,其核心语义是明确的,尽管不同轨道的实现细节和支持事实可能有所不同。
实施建议
对于SLSA框架的维护者和贡献者,建议采取以下步骤实施这些改进:
- 首先建立概念中心页面,确保关键术语有明确的定义和解释
- 重构现有文档结构,将轨道特定内容分离到相应文件
- 确保URL稳定性,特别是已经被外部系统引用的关键路径
- 在文档中明确标注各轨道的共性和差异
这些改进将使SLSA框架的文档结构更加清晰,更易于维护,同时为未来新增轨道提供良好的扩展性。对于框架使用者而言,改进后的文档结构将提供更直观的导航和更明确的概念界定,有助于正确理解和实施SLSA的各项要求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00