SLSA框架中多轨道规范的命名与文档结构优化
在软件开发供应链安全领域,SLSA框架作为提升软件制品安全性的重要标准,其规范文档的结构清晰性直接影响开发者的理解和实施。随着SLSA 1.2版本的推进,项目团队正在对文档中的命名规范和结构进行重要优化,以支持框架的多轨道发展。
当前命名规范存在的问题
现有SLSA规范文档中存在一些命名不一致的情况,主要体现在几个关键术语上:
- "requirements"(需求)一词目前特指构建轨道的要求
- "provenance"(来源证明)特指构建来源证明
- "verifying-systems"(验证系统)特指验证构建器
这种单一轨道的命名方式已经无法适应SLSA框架向多轨道发展的需求。特别值得注意的是,"provenance"文件的URL路径需要保持稳定,因为现有的证明断言类型已经指向该路径。
文档结构调整方案
针对这些问题,项目团队提出了几种优化方案:
方案一:精简层级描述
移除levels.md文件中各等级描述中的"requirements"行,要求用户直接查阅build-requirements.md文件而非依赖简化的表格。这种方案可以减少文档重复,确保信息的单一来源。
方案二:创建轨道中心页面
- 建立专门的"tracks"页面,概述各轨道基础知识并链接到相关文档
- 将levels.md内容迁移至build-track-basics.md(同时移除需求部分)
- 为源码轨道创建对应的source-track-basics.md
方案三:建立概念中心页面
为关键概念(如provenance)创建专门的着陆页面。现有URL可以指向这些着陆页面,而页面本身则解释整体概念并链接到各轨道的具体实现。例如,provenance的着陆页可以说明:"如需in-toto断言类型请点击此处",同时提供各轨道实现的链接。
多轨道语义一致性原则
在讨论过程中,团队确立了重要原则:跨轨道使用的术语应保持语义一致性。如果一个术语在不同轨道中有细微差异,要么确保其核心语义一致(从而需要顶层页面),要么使用不同术语以避免混淆。以provenance为例,其核心语义是明确的,尽管不同轨道的实现细节和支持事实可能有所不同。
实施建议
对于SLSA框架的维护者和贡献者,建议采取以下步骤实施这些改进:
- 首先建立概念中心页面,确保关键术语有明确的定义和解释
- 重构现有文档结构,将轨道特定内容分离到相应文件
- 确保URL稳定性,特别是已经被外部系统引用的关键路径
- 在文档中明确标注各轨道的共性和差异
这些改进将使SLSA框架的文档结构更加清晰,更易于维护,同时为未来新增轨道提供良好的扩展性。对于框架使用者而言,改进后的文档结构将提供更直观的导航和更明确的概念界定,有助于正确理解和实施SLSA的各项要求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00