FunASR项目中Paraformer模型微调时的内存溢出问题分析
2025-05-23 02:36:08作者:柯茵沙
在FunASR开源语音识别项目中,用户在使用Paraformer-large模型进行微调训练时遇到了GPU内存急剧增长的问题。本文将从技术角度分析这一现象的原因和解决方案。
问题现象
用户在使用speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch模型进行多语言微调时,观察到GPU内存从初始的17GB逐渐增长到54GB。从日志中可以看到,在验证阶段内存使用相对稳定,但在训练阶段内存占用明显增加。
可能原因分析
-
批处理大小不当:虽然日志显示batch_size在14-24之间变化,但可能存在动态批处理导致某些样本组合消耗过多内存。
-
长音频处理:用户提到数据集中有259条超过15秒的音频,长音频会显著增加计算图的内存需求。
-
梯度累积:如果启用了梯度累积,会保留多个前向传播的计算图,增加内存压力。
-
模型参数更新:微调时模型所有参数都需要计算和存储梯度,相比推理需要更多内存。
-
缓存机制:日志中显示cache_peak达到54GB,表明可能有数据缓存或中间结果缓存未及时释放。
解决方案建议
-
调整批处理策略:
- 使用固定大小的批处理
- 对音频按长度分组,避免长短差异过大的样本在同一批次
-
优化长音频处理:
- 对超长音频进行切分
- 增加max_length参数限制
-
内存管理优化:
- 定期清空缓存
- 使用梯度检查点技术
-
硬件资源调整:
- 使用更大显存的GPU
- 考虑多卡训练分担内存压力
最佳实践
FunASR团队已经更新了finetune.sh脚本,用户应通过git pull获取最新版本。对于类似问题,建议:
- 监控训练过程中的内存使用情况
- 从小的batch_size开始逐步增加
- 对训练数据进行预处理,过滤或切分异常长度的样本
- 考虑使用混合精度训练减少内存占用
通过以上方法,可以有效控制Paraformer模型微调时的内存使用,避免OOM错误的发生。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1