FunASR项目中模型微调后体积增大的原因分析
问题现象
在使用FunASR项目进行语音识别模型微调时,用户发现经过finetune.sh脚本微调后的模型体积显著增大。原始seaco-paraformer模型大小约为800MB,而微调后每个epoch保存的model.pt文件膨胀至2.44GB左右。这种体积的异常增长引起了用户的关注。
技术背景
FunASR是阿里巴巴达摩院开源的语音识别工具包,其中的seaco-paraformer是一种基于Paraformer架构的语音识别模型。在深度学习模型微调过程中,通常会保存多个检查点(checkpoint)以便后续评估和选择最佳模型。
原因分析
经过技术调查,发现模型体积异常增长的主要原因是模型保存方式的不同。具体来说:
-
完整模型保存:微调过程中默认会保存完整的模型状态,包括所有参数、优化器状态、训练统计信息等,这会导致保存的文件比原始模型大很多。
-
参数冗余:训练过程中保存的检查点可能包含了一些在推理阶段不需要的中间变量和临时数据。
-
平均检查点机制:FunASR项目中提供的average_checkpoints函数可以解决这个问题,它能够智能地合并多个检查点,只保留必要的模型参数。
解决方案
对于希望控制模型体积的用户,可以采用以下方法:
-
使用average_checkpoints:在训练完成后,使用该函数处理保存的检查点,可以显著减小最终模型的体积。
-
选择性保存:在训练脚本中配置只保存模型参数,而不保存优化器状态等额外信息。
-
模型剪枝:对于微调后的模型,可以考虑应用模型压缩技术进一步减小体积。
最佳实践建议
-
在微调前仔细阅读FunASR文档中关于模型保存和检查点处理的说明。
-
对于生产环境部署,务必使用经过处理的精简模型,而非训练过程中保存的完整检查点。
-
定期清理不需要的中间检查点,以节省存储空间。
-
了解模型保存格式的差异,选择最适合自己使用场景的保存方式。
通过理解这些技术细节,用户可以更好地管理模型微调过程中的存储需求,并确保最终部署的模型保持合理的大小。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01