FunASR项目中模型微调后体积增大的原因分析
问题现象
在使用FunASR项目进行语音识别模型微调时,用户发现经过finetune.sh脚本微调后的模型体积显著增大。原始seaco-paraformer模型大小约为800MB,而微调后每个epoch保存的model.pt文件膨胀至2.44GB左右。这种体积的异常增长引起了用户的关注。
技术背景
FunASR是阿里巴巴达摩院开源的语音识别工具包,其中的seaco-paraformer是一种基于Paraformer架构的语音识别模型。在深度学习模型微调过程中,通常会保存多个检查点(checkpoint)以便后续评估和选择最佳模型。
原因分析
经过技术调查,发现模型体积异常增长的主要原因是模型保存方式的不同。具体来说:
-
完整模型保存:微调过程中默认会保存完整的模型状态,包括所有参数、优化器状态、训练统计信息等,这会导致保存的文件比原始模型大很多。
-
参数冗余:训练过程中保存的检查点可能包含了一些在推理阶段不需要的中间变量和临时数据。
-
平均检查点机制:FunASR项目中提供的average_checkpoints函数可以解决这个问题,它能够智能地合并多个检查点,只保留必要的模型参数。
解决方案
对于希望控制模型体积的用户,可以采用以下方法:
-
使用average_checkpoints:在训练完成后,使用该函数处理保存的检查点,可以显著减小最终模型的体积。
-
选择性保存:在训练脚本中配置只保存模型参数,而不保存优化器状态等额外信息。
-
模型剪枝:对于微调后的模型,可以考虑应用模型压缩技术进一步减小体积。
最佳实践建议
-
在微调前仔细阅读FunASR文档中关于模型保存和检查点处理的说明。
-
对于生产环境部署,务必使用经过处理的精简模型,而非训练过程中保存的完整检查点。
-
定期清理不需要的中间检查点,以节省存储空间。
-
了解模型保存格式的差异,选择最适合自己使用场景的保存方式。
通过理解这些技术细节,用户可以更好地管理模型微调过程中的存储需求,并确保最终部署的模型保持合理的大小。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









