PQ-NET 开源项目使用教程
2024-09-21 15:56:15作者:史锋燃Gardner
1. 项目介绍
PQ-NET 是一个用于生成 3D 形状的深度神经网络,通过序列化的部分组装来表示和生成 3D 形状。该项目在 CVPR 2020 上发表,并提供了 PyTorch 实现。PQ-NET 的核心组件是一个序列到序列(Seq2Seq)自动编码器,它将 3D 形状的各个部分编码为固定大小的潜在向量,并通过解码器逐步重建 3D 形状。该网络可以应用于形状自动编码、插值、新形状生成和单视图 3D 重建等任务。
2. 项目快速启动
2.1 环境准备
确保你的环境满足以下要求:
- Linux 操作系统
- NVIDIA GPU + CUDA CuDNN
- Python 3.6
安装依赖包:
pip install -r requirements.txt
2.2 数据准备
下载并解压数据集:
cd data
tar -xvf Lamp.tar.gz
采样点云数据:
python data/sample_points_from_voxel.py --src data --category Lamp
2.3 模型训练
训练部分自动编码器:
sh scripts/lamp/train_lamp_partae_multiscale.sh
训练 Seq2Seq 模型:
sh scripts/lamp/train_lamp_seq2seq.sh
训练潜在 GAN:
sh scripts/lamp/train_lamp_lgan.sh
2.4 模型测试
形状自动编码:
sh scripts/lamp/rec_lamp_seq2seq.sh
形状生成:
sh scripts/lamp/test_lamp_lgan.sh
sh scripts/lamp/dec_lamp_seq2seq.sh
3. 应用案例和最佳实践
3.1 形状自动编码
PQ-NET 可以用于将 3D 形状编码为潜在向量,并通过解码器重建原始形状。这在形状压缩和传输中非常有用。
3.2 新形状生成
通过训练潜在 GAN,PQ-NET 可以生成新的 3D 形状,这些形状由有意义的部件组成,适用于 3D 设计和新产品开发。
3.3 单视图 3D 重建
PQ-NET 还可以用于从单个 2D 视图生成 3D 形状,这在计算机视觉和增强现实中具有广泛的应用。
4. 典型生态项目
4.1 Occupancy Networks
Occupancy Networks 是一个用于 3D 形状表示和生成的项目,与 PQ-NET 类似,它也使用了深度学习技术来处理 3D 数据。
4.2 PartNet
PartNet 是一个大规模的 3D 形状数据集,提供了详细的部件级分割,非常适合用于训练和评估 PQ-NET 这样的部件级生成模型。
4.3 PyTorch
PyTorch 是 PQ-NET 的实现框架,提供了强大的深度学习工具和库,支持高效的模型训练和推理。
通过以上步骤,你可以快速上手并使用 PQ-NET 进行 3D 形状生成和相关任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134