PseCo 项目使用教程
2024-09-25 08:04:13作者:姚月梅Lane
1. 项目介绍
PseCo 是一个用于半监督目标检测的官方实现,发表于 ECCV 2022。该项目通过伪标签和一致性训练两种关键技术,结合目标检测的特性,提升了半监督学习在目标检测任务中的表现。PseCo 在不同标注比例的数据集上均表现出色,显著提高了检测精度和学习效率。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统满足以下要求:
- Ubuntu 16.04
- Anaconda3 with python=3.6
- Pytorch=1.9.0
- mmdetection=2.16.0+fe46ffe
- mmcv=1.3.9
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/ligang-cs/PseCo.git cd PseCo -
安装依赖:
pip install -r requirements.txt -
安装 mmdetection:
cd thirdparty/mmdetection pip install -e .
2.3 数据准备
下载 COCO 数据集并生成数据集分割:
# 假设 YOUR_DATA 是一个包含 coco 数据集的目录
# 例如:
# YOUR_DATA/
# coco/
# train2017/
# val2017/
# unlabeled2017/
# annotations/
ln -s $[YOUR_DATA] data
bash tools/dataset/prepare_coco_data.sh
2.4 模型训练
根据标注比例选择合适的训练脚本:
-
对于 5% 和 10% 标注比例:
bash tools/dist_train_partially_labeled.sh -
对于 1% 和 2% 标注比例:
bash tools/dist_train_partially_labeled_90k_iter.sh -
对于全标注数据集:
bash tools/dist_train_fully_labeled.sh
2.5 模型评估
使用以下命令进行模型评估:
bash tools/test.sh
请在 tools/test.sh 中指定配置文件和检查点路径。
3. 应用案例和最佳实践
PseCo 在半监督目标检测任务中表现优异,特别适用于标注数据有限但需要高精度检测的场景。例如,在自动驾驶、智能监控等领域,PseCo 可以帮助开发者利用有限的标注数据实现高效的目标检测。
最佳实践包括:
- 根据实际标注比例选择合适的训练脚本。
- 在训练过程中,监控模型的损失和精度,及时调整超参数。
- 使用 PseCo 提供的预训练模型进行微调,以加速训练过程。
4. 典型生态项目
- mmdetection: 一个基于 PyTorch 的目标检测工具箱,提供了丰富的目标检测模型和工具。
- Soft Teacher: PseCo 基于 Soft Teacher 构建,Soft Teacher 是一个用于半监督目标检测的框架。
- COCO API: 用于处理 COCO 数据集的官方 API,提供了数据加载、预处理等功能。
通过这些生态项目,PseCo 能够更好地与其他工具和框架集成,提升整体开发效率和检测性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143