DeepSeek Janus模型在GenEval基准测试中的复现问题解析
2025-05-13 04:11:19作者:申梦珏Efrain
引言
DeepSeek团队开源的Janus系列多模态大模型在文本生成图像任务上表现出色,但在实际应用中,研究人员发现其评估结果与论文报告存在差异。本文针对Janus-Pro模型在GenEval基准测试中的复现问题进行了深入分析,揭示了关键影响因素。
问题现象
多位研究人员在复现Janus-Pro模型(包括1B和7B版本)的GenEval评估结果时遇到了困难。主要问题表现为:
- 使用默认参数设置时,评估结果与论文报告存在显著差异
- 1B模型的复现结果差异尤为明显
- 不同研究者使用相同参数却得到不一致的结果
关键发现
经过深入分析,我们发现影响评估结果的关键因素包括:
1. 提示模板差异
Janus和Janus-Pro模型使用了不同的对话模板:
- Janus标准版使用"User"和"Assistant"作为角色标识
- Janus-Pro版则使用"<|User|>"和"<|Assistant|>"作为角色标识
这一细微差别对1B模型的影响尤为显著,而对7B模型影响相对较小,这可能是由于模型容量不同导致的鲁棒性差异。
2. 评估参数设置
正确的评估参数应包括:
- 温度参数(temperature)设置为1.0
- CFG权重(cfg_weight)设置为5
- 图像token数(image_token_num_per_image)设置为576
- 图像尺寸(img_size)设置为384
- 补丁尺寸(patch_size)设置为16
3. 随机性因素
评估过程中的随机种子设置也会影响最终结果,特别是在多轮采样评估场景下。
解决方案
为确保正确复现论文结果,建议采取以下措施:
- 严格区分Janus和Janus-Pro模型的提示模板
- 使用官方推荐的参数配置
- 进行多次评估取平均值以减小随机性影响
- 对于关键研究,建议公开完整的评估脚本和参数设置
实际效果验证
研究人员在修正提示模板后,成功复现了论文报告的评估结果。例如Janus-Pro-1B模型在GenEval基准上的各项指标与论文数据基本吻合:
- 单物体识别准确率达到99%
- 双物体识别准确率约89%
- 颜色识别准确率约90%
- 综合评分达到0.80
结论
本文详细分析了DeepSeek Janus系列模型在GenEval基准测试中的复现问题,揭示了提示模板和参数设置对评估结果的关键影响。这一发现不仅解决了当前的研究困惑,也为后续的多模态模型评估提供了重要参考。建议研究社区在使用开源模型时,特别注意模型版本对应的技术细节差异。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
580
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
352
仓颉编程语言运行时与标准库。
Cangjie
130
365
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205