DeepSeek Janus模型在GenEval基准测试中的复现问题解析
2025-05-13 15:48:58作者:申梦珏Efrain
引言
DeepSeek团队开源的Janus系列多模态大模型在文本生成图像任务上表现出色,但在实际应用中,研究人员发现其评估结果与论文报告存在差异。本文针对Janus-Pro模型在GenEval基准测试中的复现问题进行了深入分析,揭示了关键影响因素。
问题现象
多位研究人员在复现Janus-Pro模型(包括1B和7B版本)的GenEval评估结果时遇到了困难。主要问题表现为:
- 使用默认参数设置时,评估结果与论文报告存在显著差异
- 1B模型的复现结果差异尤为明显
- 不同研究者使用相同参数却得到不一致的结果
关键发现
经过深入分析,我们发现影响评估结果的关键因素包括:
1. 提示模板差异
Janus和Janus-Pro模型使用了不同的对话模板:
- Janus标准版使用"User"和"Assistant"作为角色标识
- Janus-Pro版则使用"<|User|>"和"<|Assistant|>"作为角色标识
这一细微差别对1B模型的影响尤为显著,而对7B模型影响相对较小,这可能是由于模型容量不同导致的鲁棒性差异。
2. 评估参数设置
正确的评估参数应包括:
- 温度参数(temperature)设置为1.0
- CFG权重(cfg_weight)设置为5
- 图像token数(image_token_num_per_image)设置为576
- 图像尺寸(img_size)设置为384
- 补丁尺寸(patch_size)设置为16
3. 随机性因素
评估过程中的随机种子设置也会影响最终结果,特别是在多轮采样评估场景下。
解决方案
为确保正确复现论文结果,建议采取以下措施:
- 严格区分Janus和Janus-Pro模型的提示模板
- 使用官方推荐的参数配置
- 进行多次评估取平均值以减小随机性影响
- 对于关键研究,建议公开完整的评估脚本和参数设置
实际效果验证
研究人员在修正提示模板后,成功复现了论文报告的评估结果。例如Janus-Pro-1B模型在GenEval基准上的各项指标与论文数据基本吻合:
- 单物体识别准确率达到99%
- 双物体识别准确率约89%
- 颜色识别准确率约90%
- 综合评分达到0.80
结论
本文详细分析了DeepSeek Janus系列模型在GenEval基准测试中的复现问题,揭示了提示模板和参数设置对评估结果的关键影响。这一发现不仅解决了当前的研究困惑,也为后续的多模态模型评估提供了重要参考。建议研究社区在使用开源模型时,特别注意模型版本对应的技术细节差异。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248