《使用Terraform在Google Cloud上部署容器实例指南》
项目介绍
本指南基于Terraform Google Container VM模块,该模块专注于生成用于在GCE(Google Compute Engine)实例上部署容器的元数据。它不直接创建实例或管理实例组,而是提供必要的配置以便用户自定义实例或实例组的创建过程。这个模块特别适合那些希望利用Terraform自动化Google云上的容器部署场景的企业和个人开发者。
项目快速启动
环境准备
确保你的开发环境中安装了Terraform(推荐版本0.13及以上),并拥有有效的Google云平台(GCP)服务账户凭证。
步骤一:初始化环境
首先,你需要克隆此GitHub仓库到本地:
git clone https://github.com/terraform-google-modules/terraform-google-container-vm.git
cd terraform-google-container-vm
然后,在项目根目录执行terraform init来获取必需的插件。
步骤二:配置并部署
接下来,你可以参考examples/simple_instance中的main.tf文件来设置你的容器部署。以下是一个简化的示例,展示了如何定义一个容器部署:
provider "google" {
# 设置你的GCP区域和项目ID
}
module "gce-container" {
source = "terraform-google-modules/container-vm/google"
version = "~> 3.0"
container = [
{
image = "gcr.io/google-samples/hello-app:1.0"
env = [
{name = "TEST_VAR", value = "Hello World"},
]
},
]
restart_policy = "Always"
}
resource "google_compute_instance" "vm" {
name = "${local.instance_name}"
machine_type = "n1-standard-1"
zone = "us-central1-a"
boot_disk {
initialize_params {
image = module.gce-container.source_image
}
}
network_interface {
subnetwork = var.subnetwork
access_config {}
}
metadata = {
gce-container-declaration = module.gce-container.metadata_value
google-logging-enabled = "true"
google-monitoring-enabled = "true"
}
}
记得替换必要的变量如项目ID(project_id)和子网络(subnetwork)。
步骤三:执行计划并应用
执行terraform plan查看即将执行的变化,无误后通过terraform apply部署实例。
应用案例和最佳实践
在实际生产中,使用本模块的最佳实践包括:
- 利用Terraform的版本控制和工作空间来管理不同环境的配置。
- 结合IaC(基础设施即代码)原则,确保环境的一致性和可追溯性。
- 集成CI/CD流程,自动部署容器更新。
- 使用命名标签和详细元数据,便于管理和监控。
典型生态项目
与terraform-google-container-vm模块相辅相成的生态项目可能包括监控与日志集成,如使用Stackdriver的日志和监控功能,或者与Kubernetes集群集成以实现更高级的容器编排。通过结合terraform-google-kubernetes-engine等模块,可以构建高度动态和服务导向的基础架构,从而支持微服务架构和持续交付工作流。
以上就是利用Terraform Google Container VM模块快速部署Google Cloud上容器实例的简明指南,通过这种方式,你能够高效地管理GCP上的容器化应用部署,确保基础设施的标准化和自动化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00