Prometheus SLO Burn实战指南:云原生监控与SLO管理
2024-09-12 16:17:50作者:伍霜盼Ellen
项目介绍
Prometheus SLO Burn 是一个开源项目,专为希望在云原生环境中以Prometheus为核心实施服务等级指标(Service Level Indicators, SLI)监控和达成服务等级目标(Service Level Objectives, SLOs)的团队设计。本项目提供了一整套示例代码和自动化部署脚本,允许开发者快速设置SLI监控,并通过Grafana等工具直观展现数据,确保服务的可靠性达到高标准。
项目快速启动
要快速启动此项目,你需要具备基本的Google Cloud Platform (GCP)知识,以及对Prometheus和Terraform的基本了解。以下是简化的快速启动流程:
步骤1:准备环境
- 安装
gcloud SDK,Terraform,并配置好你的Google Cloud账号。 - 确保已安装
kubectl并配置相应GCP项目。
步骤2:克隆项目
git clone https://github.com/google/prometheus-slo-burn-example.git
cd prometheus-slo-burn-example
步骤3:构建镜像与部署
首先,在根目录下执行以下命令来构建必要的镜像:
gcloud builds submit --project $YOUR_GOOGLE_PROJECT
然后,进入terraform目录进行环境配置与部署:
[[ $CLOUD_SHELL ]] || gcloud auth application-default login
export GOOGLE_PROJECT=your-project-id
export REGION=us-central1 # 或者选择你喜欢的区域
cd terraform
terraform init
terraform apply -var "gcp_region=$REGION"
这会创建必需的GCP资源,如Kubernetes集群,并部署Prometheus、Grafana等组件。
步骤4:访问Grafana仪表板
部署完成后,你可以通过Kubernetes服务端口映射访问Grafana仪表板,一般形式如下:
http://localhost:30431
请替换具体的端口号,因为它是动态分配的。
应用案例和最佳实践
- 精准监控SLI:定义和监控关键服务指标,比如HTTP错误率,确保它们低于预设的SLO阈值。
- 主动报警配置:通过设定Prometheus规则,一旦SLI超出范围,立刻触发警报,及时采取行动。
- 长期服务优化:利用长时间的数据分析,不断调优服务,减少错误预算的消耗,提高服务质量。
典型生态项目
- Prometheus: 作为核心监控系统,负责数据采集和处理。
- Grafana: 提供丰富的可视化界面,用于展现SLI趋势和SLO状态。
- Terraform: 自动化基础架构部署,确保环境的一致性和可复现性。
- CloudProber: 用于主动探测服务健康状况的工具,可集成到该体系中增强监测能力。
本指南提供了一个概览性的起点,实际部署和维护过程中还需参考项目文档和社区提供的最新信息,以适应特定环境和需求的变化。通过实践Prometheus SLO Burn项目,你将深化对云原生环境下服务可靠性的理解和掌控。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669