Kafka Streams 机器学习示例项目教程
1. 项目介绍
kafka-streams-machine-learning-examples
是一个开源项目,旨在展示如何将分析模型部署到利用 Apache Kafka 和其 Streams API 的使命关键型、可扩展的生产环境中。该项目包含多个示例,涵盖了使用 TensorFlow、Keras、H2O、Python、DeepLearning4J 等技术构建的模型。
2. 项目快速启动
2.1 环境准备
- 操作系统: Mac 或 Linux(不支持 Windows)
- Java 版本: Java 8
- Maven 版本: Maven 3
- Apache Kafka 版本: 2.5(兼容 Kafka 1.1 和 2.x)
2.2 项目下载与构建
-
克隆项目到本地:
git clone https://github.com/kaiwaehner/kafka-streams-machine-learning-examples.git cd kafka-streams-machine-learning-examples
-
使用 Maven 构建项目:
mvn clean package
2.3 运行示例
2.3.1 示例1:使用 H2O GBM 预测航班延误
-
启动 Kafka 集群(至少一个 Zookeeper 和一个 Kafka broker)。
-
创建所需的 Kafka 主题:
kafka-topics --bootstrap-server localhost:9092 --create --topic AirlineInputTopic --partitions 3 --replication-factor 1 kafka-topics --bootstrap-server localhost:9092 --create --topic AirlineOutputTopic --partitions 3 --replication-factor 1
-
运行 Kafka Streams 应用程序:
java -cp h2o-gbm/target/h2o-gbm-CP53_AK23-jar-with-dependencies.jar com.github.megachucky.kafka.streams.machinelearning.Kafka_Streams_MachineLearning_H2O_GBM_Example
-
发送测试消息:
echo -e "1987\t10\t14\t3\t741\t730\t912\t849\tPS\t1451\tNA\t91\t79\tNA\t23\t11\tSAN\tSFO\t447\tNA\tNA\t0\tNA\t0\tNA\tNA\tNA\tNA\tNA\tYES\tYES" | kafkacat -b localhost:9092 -P -t AirlineInputTopic
-
消费预测结果:
kafka-console-consumer --bootstrap-server localhost:9092 --topic AirlineOutputTopic --from-beginning
3. 应用案例和最佳实践
3.1 航班延误预测
该项目展示了如何使用 H2O 的梯度提升机(GBM)模型来预测航班延误。通过 Kafka Streams 应用程序,实时处理航班数据并进行预测。
3.2 图像识别
使用 TensorFlow 的卷积神经网络(CNN)模型进行图像识别。通过 Kafka Streams 应用程序,实时处理图像数据并进行分类。
3.3 Iris 花分类
使用 DeepLearning4J(DL4J)模型来预测 Iris 花的种类。通过 Kafka Streams 应用程序,实时处理 Iris 花的数据并进行分类。
4. 典型生态项目
4.1 Apache Kafka
Apache Kafka 是一个分布式流处理平台,广泛用于构建实时数据管道和流应用。
4.2 TensorFlow
TensorFlow 是一个开源的机器学习框架,支持从研究原型到生产部署的整个机器学习工作流程。
4.3 H2O.ai
H2O.ai 提供了一个开源的分布式机器学习平台,支持多种机器学习算法,包括深度学习和梯度提升机。
4.4 DeepLearning4J
DeepLearning4J 是一个用于 Java 和 Scala 的开源深度学习库,支持在分布式环境中进行深度学习模型的训练和部署。
通过这些生态项目的结合,kafka-streams-machine-learning-examples
展示了如何在生产环境中高效地部署和运行机器学习模型。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04