UnrealMobileNeRF 项目下载及安装教程
1. 项目介绍
UnrealMobileNeRF 是一个用于在 Unreal Engine 中导入和可视化预训练 MobileNeRF 场景的插件。MobileNeRF 是一种优化的 NeRF 表示,它依赖于带纹理的多边形,利用标准渲染管道而不是光线行进算法。通过这个插件,用户可以在 Unreal Engine 中创建和使用预训练的 MobileNeRF 场景。
2. 项目下载位置
要下载 UnrealMobileNeRF 项目,请访问项目的 GitHub 仓库。你可以通过以下命令克隆项目到本地:
git clone https://github.com/AyoubKhammassi/UnrealMobileNeRF.git
3. 项目安装环境配置
3.1 系统要求
- 操作系统:Windows 10 或更高版本
- Unreal Engine 版本:4.27 或更高版本
- Python 版本:3.6 或更高版本
3.2 环境配置
-
安装 Unreal Engine
确保你已经安装了 Unreal Engine 4.27 或更高版本。你可以从 Epic Games Launcher 中下载并安装 Unreal Engine。

-
安装 Python
确保你已经安装了 Python 3.6 或更高版本。你可以从 Python 官方网站 下载并安装。

-
安装依赖库
在项目目录下运行以下命令安装所需的 Python 依赖库:
pip install wget
4. 项目安装方式
-
克隆项目
使用以下命令将项目克隆到你的本地目录:
git clone https://github.com/AyoubKhammassi/UnrealMobileNeRF.git -
将插件添加到 Unreal Engine 项目
将克隆的项目文件夹移动到你的 Unreal Engine 项目的
Plugins文件夹中。例如,如果你的项目名为YourProjectName,则文件夹结构应如下:YourProjectName/ ├── Plugins/ │ └── UnrealMobileNeRF/ └── ... -
重新编译项目
打开 Unreal Engine 编辑器,重新编译你的项目。插件将从源代码构建。
-
启用插件
在 Unreal Engine 编辑器中,导航到
编辑->插件,找到UnrealMobileNeRF插件并启用它。
5. 项目处理脚本
UnrealMobileNeRF 项目包含一个 Python 脚本 DownloadMobileNeRFSamples.py,用于下载预训练的 MobileNeRF 场景。你可以使用以下命令运行该脚本:
python "path/to/plugin/DownloadMobileNeRFSamples.py" "Path/where/to/download/" --name SceneName
或者,如果你想下载所有可用的示例场景,可以使用 --all 标志:
python "path/to/plugin/DownloadMobileNeRFSamples.py" "Path/where/to/download/" --all
该脚本将下载所需的文件并将其放置在你指定的目录中。
通过以上步骤,你应该能够成功下载并安装 UnrealMobileNeRF 插件,并开始在 Unreal Engine 中使用预训练的 MobileNeRF 场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00