使用Diffrax高效模拟多维SDE轨迹的技术解析
2025-07-10 10:46:05作者:齐冠琰
Diffrax作为JAX生态中的微分方程求解库,在处理随机微分方程(SDE)方面提供了强大的功能。本文将重点介绍如何正确使用Diffrax模拟多维SDE的多个独立轨迹,并分析其中的关键技术细节。
多维SDE模拟的基本框架
在Diffrax中,模拟一个带有加性噪声的多维SDE系统需要以下几个关键组件:
- 漂移项(Drift Term):描述系统的确定性部分
- 扩散项(Diffusion Term):描述系统的随机部分
- 布朗运动生成器:为系统提供随机性来源
- 求解器:数值求解SDE
对于二维系统,漂移项可以定义为:
drift = lambda _, y, args: jnp.array([-y[0], -y[1]])
加性噪声的正确实现
加性噪声指的是噪声系数不依赖于系统状态的SDE。在Diffrax中,扩散项的实现需要注意:
- 直接返回JAX数组会导致错误,因为它会被解释为密集矩阵
- 推荐使用
lineax.DiagonalLinearOperator表示对角噪声矩阵 - 对于单位矩阵情况,也可以使用
lineax.IdentityLinearOperator
正确的扩散项实现方式:
diffusion = lambda _, y, args: lx.DiagonalLinearOperator(jnp.array([1,1]))
多轨迹并行模拟的关键技术
在JAX生态中,使用vmap进行并行化模拟时,随机数处理需要特别注意:
- 必须在
vmap外部生成所有随机种子 - 使用
jax.random.split预先分配所有需要的随机密钥 - 将随机密钥作为参数传递给被
vmap的函数
正确做法示例:
one_key = jr.PRNGKey(0)
many_keys = jr.split(one_key, n_paths)
def solve(y0, key):
bm = VirtualBrownianTree(0, 1, tol=1e-3, shape=(2,), key=key)
terms = MultiTerm(ODETerm(drift), ControlTerm(diffusion, bm))
return diffeqsolve(terms, Euler(), 0, 1, dt0=0.01, y0=y0)
sol_multiple = jx.vmap(solve, in_axes=[0,0])
sols = sol_multiple(y0s, many_keys)
性能优化建议
- 对于对角噪声矩阵,坚持使用
DiagonalLinearOperator而非密集矩阵 - 适当调整
VirtualBrownianTree的tol参数平衡精度和性能 - 根据问题特性选择合适的求解器(如Euler、Milstein等)
- 合理设置
dt0和max_steps参数确保收敛
通过以上技术要点,开发者可以高效地在Diffrax中实现多维SDE系统的多轨迹模拟,充分利用JAX的自动并行化能力。这种模式不仅适用于简单的Ornstein-Uhlenbeck过程,也可以扩展到更复杂的随机微分方程系统。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218