CogVLM项目微调CogAgent模型时的Checkpoint保存问题分析
问题背景
在CogVLM项目中使用8张A100 GPU(40GB显存)进行CogAgent-chat模型微调时,研究人员遇到了一个关于模型checkpoint保存的异常现象。当设置MP_SIZE为8且不使用LoRA微调时,模型参数被错误地分散保存到了两个不同的目录中,导致后续模型合并和测试时出现严重性能问题。
现象描述
在微调过程中,研究人员观察到以下异常现象:
-
模型checkpoint被分散保存到两个不同目录:
- mp_rank_00_model_states.pt保存在finetune-cogagent-chat-01-02-12-37目录下
- 其余mp_rank_xx_model_states.pt文件保存在finetune-cogagent-chat-01-02-12-36目录下
-
手动合并这些checkpoint文件后,使用merge_model.py脚本进行模型合并时,出现了大量"unexpected_keys"警告,提示模型参数加载不完整。
-
最终测试结果显示模型性能严重下降,表明参数加载过程存在问题。
技术分析
分布式训练中的checkpoint保存机制
在分布式训练环境下,当使用模型并行(MP)策略时,模型参数会被分割到不同的GPU上。每个GPU负责保存自己部分的参数,通常以mp_rank_xx_model_states.pt的形式命名。在理想情况下,所有这些文件应该保存在同一个目录下。
问题根源
经过分析,这个问题可能由以下几个因素导致:
-
分布式训练环境配置问题:当MP_SIZE设置为8时,系统可能没有正确配置分布式训练环境,导致不同rank的进程将checkpoint保存到了不同目录。
-
checkpoint保存路径处理逻辑:在模型保存过程中,可能由于路径生成逻辑的问题,不同rank的进程使用了不同的基础路径。
-
模型合并脚本兼容性问题:原始的merge_model.py脚本可能针对CogVLMModel进行了优化,而没有完全适配CogAgentModel的特殊结构。
解决方案
针对这个问题,项目维护者提供了明确的解决方案:
-
修改merge_model.py脚本:将脚本中的CogVLMModel替换为CogAgentModel,确保脚本能够正确处理CogAgent模型的结构。
-
检查分布式训练配置:确保所有rank的进程使用相同的checkpoint保存基础路径。
-
统一checkpoint目录:在模型保存后,可以编写脚本自动将所有mp_rank文件移动到同一目录下,确保模型合并时能够找到所有必要的参数文件。
最佳实践建议
对于在CogVLM项目中进行大规模分布式微调的研究人员,建议采取以下措施避免类似问题:
-
在开始训练前,仔细检查分布式训练环境的配置,确保所有节点和进程能够正确通信。
-
实现checkpoint保存路径的验证机制,确保所有rank使用相同的基路径。
-
针对特定模型结构(CogVLMModel或CogAgentModel)使用对应的合并脚本。
-
在训练过程中定期验证checkpoint的完整性,避免在训练结束后才发现问题。
-
考虑实现自动化的checkpoint收集和验证流程,减少人为操作带来的错误。
通过以上措施,可以有效避免在分布式训练环境下出现的checkpoint保存问题,确保模型微调过程的顺利进行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00