OpenBMB/OmniLMM 视觉编码器中的SigLIP SoViT-400m/14技术解析
2025-05-11 00:08:30作者:邓越浪Henry
在OpenBMB/OmniLMM项目中,视觉编码器部分采用了SigLIP SoViT-400m/14模型作为其核心视觉特征提取组件。这一选择体现了项目团队在视觉-语言多模态模型设计上的前沿思考和技术路线。
模型架构与特性
SigLIP SoViT-400m/14是基于Vision Transformer(ViT)架构的视觉编码器,其核心参数规模达到400百万。该模型采用了14×14的patch大小,这是ViT架构中的标准配置之一,能够有效平衡计算效率和特征提取能力。
值得注意的是,项目团队使用的是经过特殊改进的版本,该版本引入了navit position embedding机制。这种位置编码方式相比传统的ViT位置编码可能具有更好的空间关系建模能力,特别是在处理高分辨率输入时表现更为出色。
输入分辨率设计
在模型的实际应用中,团队选择了448×448的输入分辨率。这一选择有几个技术考量:
- 计算效率:相比原始模型支持的980分辨率,448分辨率显著降低了计算开销
- 特征丰富度:448分辨率已经能够捕捉足够的视觉细节
- 训练稳定性:中等分辨率有助于模型训练的稳定性和收敛速度
虽然模型理论上支持高达980的分辨率输入,但在OpenBMB/OmniLMM项目中,团队通过实践验证了448分辨率在精度和效率上的良好平衡。
训练策略
在模型训练过程中,项目团队采用了以下关键技术策略:
- 参数初始化:基于预训练的siglip-so400m-14-980模型进行初始化
- 联合训练:视觉编码器(ViT)部分在训练过程中保持可训练状态,而非冻结
- 分辨率适配:将输入统一调整为448分辨率进行训练
这种训练策略既利用了大规模预训练模型的知识,又通过fine-tuning使模型更好地适应特定任务需求。
技术优势
SigLIP SoViT-400m/14在OpenBMB/OmniLMM项目中的应用带来了几个显著优势:
- 强大的视觉特征提取能力:基于ViT的架构能够有效建模长距离依赖关系
- 灵活的输入处理:支持多种分辨率输入,适应不同应用场景
- 高效的位置编码:navit position embedding提升了空间关系建模能力
这些特性使得该视觉编码器能够为多模态语言模型提供高质量的视觉特征表示,是OpenBMB/OmniLMM项目成功的关键技术组件之一。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137