geometry-processing-js 使用教程
1. 项目介绍
geometry-processing-js
是一个用于 Web 上 3D 几何处理的快速且灵活的框架。它由 Carnegie Mellon University 的 Geometry Collective 团队开发和维护。该框架特别适合用于移动应用、在线演示和课程内容等场景。由于其基于 WebGL 和 HTML 的集成,使得它能够在任何支持 Web 浏览器的平台上运行,包括移动设备。
主要特点:
- 高性能:在许多任务中,性能接近原生(C++)代码。
- 无需编译:由于是纯 JavaScript 实现,无需编译或安装,只需将文件复制到任何 Web 浏览器中即可运行。
- 灵活性:支持在浏览器中直接编辑几何处理算法。
2. 项目快速启动
2.1 克隆项目
首先,克隆 geometry-processing-js
仓库到本地:
git clone https://github.com/GeometryCollective/geometry-processing-js.git
cd geometry-processing-js
2.2 运行示例项目
进入 projects
目录,打开任意子目录中的 index.html
文件:
cd projects
open index.html # 在 macOS 上
或者在浏览器中直接打开 index.html
文件。
2.3 示例代码
以下是一个简单的示例代码,展示了如何使用 geometry-processing-js
解决一个泊松方程:
// 为网格的每个顶点分配一个索引
let vertexIndex = indexElements(geometry, mesh, vertices);
// 构建 cotan-Laplace 和质量矩阵
let A = geometry.laplaceMatrix(vertexIndex);
let M = geometry.massMatrix(vertexIndex);
let rhs = M.timesDense(rho);
// 使用给定的右端项 rhs 求解泊松方程
let llt = A.chol();
let phi = llt.solvePositiveDefinite(rhs);
3. 应用案例和最佳实践
3.1 移动应用
geometry-processing-js
特别适合用于移动应用,因为它可以在任何支持 Web 浏览器的移动设备上运行。开发者可以利用其高性能的几何处理能力,创建复杂的 3D 图形应用。
3.2 在线演示
由于其无需安装的特性,geometry-processing-js
非常适合用于在线演示。开发者可以快速构建和部署 3D 几何处理演示,供用户在浏览器中直接体验。
3.3 课程内容
教育机构可以使用 geometry-processing-js
作为教学工具,帮助学生理解和实践 3D 几何处理算法。学生可以直接在浏览器中编辑和运行代码,实时查看结果。
4. 典型生态项目
4.1 three.js
geometry-processing-js
与 three.js
结合使用,可以实现更复杂的 3D 渲染效果。three.js
是一个广泛使用的 3D 图形库,支持 WebGL 渲染。
4.2 Mocha 和 Chai
geometry-processing-js
使用 Mocha
和 Chai
进行单元测试。这些工具可以帮助开发者确保代码的正确性和稳定性。
4.3 Eigen
geometry-processing-js
内部使用了 Eigen
库的 JavaScript 封装,用于高效的线性代数计算。Eigen
是一个高性能的 C++ 线性代数库。
通过以上模块的介绍,开发者可以快速上手并深入了解 geometry-processing-js
的使用和应用场景。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









