geometry-processing-js 使用教程
1. 项目介绍
geometry-processing-js 是一个用于 Web 上 3D 几何处理的快速且灵活的框架。它由 Carnegie Mellon University 的 Geometry Collective 团队开发和维护。该框架特别适合用于移动应用、在线演示和课程内容等场景。由于其基于 WebGL 和 HTML 的集成,使得它能够在任何支持 Web 浏览器的平台上运行,包括移动设备。
主要特点:
- 高性能:在许多任务中,性能接近原生(C++)代码。
- 无需编译:由于是纯 JavaScript 实现,无需编译或安装,只需将文件复制到任何 Web 浏览器中即可运行。
- 灵活性:支持在浏览器中直接编辑几何处理算法。
2. 项目快速启动
2.1 克隆项目
首先,克隆 geometry-processing-js 仓库到本地:
git clone https://github.com/GeometryCollective/geometry-processing-js.git
cd geometry-processing-js
2.2 运行示例项目
进入 projects 目录,打开任意子目录中的 index.html 文件:
cd projects
open index.html # 在 macOS 上
或者在浏览器中直接打开 index.html 文件。
2.3 示例代码
以下是一个简单的示例代码,展示了如何使用 geometry-processing-js 解决一个泊松方程:
// 为网格的每个顶点分配一个索引
let vertexIndex = indexElements(geometry, mesh, vertices);
// 构建 cotan-Laplace 和质量矩阵
let A = geometry.laplaceMatrix(vertexIndex);
let M = geometry.massMatrix(vertexIndex);
let rhs = M.timesDense(rho);
// 使用给定的右端项 rhs 求解泊松方程
let llt = A.chol();
let phi = llt.solvePositiveDefinite(rhs);
3. 应用案例和最佳实践
3.1 移动应用
geometry-processing-js 特别适合用于移动应用,因为它可以在任何支持 Web 浏览器的移动设备上运行。开发者可以利用其高性能的几何处理能力,创建复杂的 3D 图形应用。
3.2 在线演示
由于其无需安装的特性,geometry-processing-js 非常适合用于在线演示。开发者可以快速构建和部署 3D 几何处理演示,供用户在浏览器中直接体验。
3.3 课程内容
教育机构可以使用 geometry-processing-js 作为教学工具,帮助学生理解和实践 3D 几何处理算法。学生可以直接在浏览器中编辑和运行代码,实时查看结果。
4. 典型生态项目
4.1 three.js
geometry-processing-js 与 three.js 结合使用,可以实现更复杂的 3D 渲染效果。three.js 是一个广泛使用的 3D 图形库,支持 WebGL 渲染。
4.2 Mocha 和 Chai
geometry-processing-js 使用 Mocha 和 Chai 进行单元测试。这些工具可以帮助开发者确保代码的正确性和稳定性。
4.3 Eigen
geometry-processing-js 内部使用了 Eigen 库的 JavaScript 封装,用于高效的线性代数计算。Eigen 是一个高性能的 C++ 线性代数库。
通过以上模块的介绍,开发者可以快速上手并深入了解 geometry-processing-js 的使用和应用场景。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00