geometry-processing-js 使用教程
1. 项目介绍
geometry-processing-js 是一个用于 Web 上 3D 几何处理的快速且灵活的框架。它由 Carnegie Mellon University 的 Geometry Collective 团队开发和维护。该框架特别适合用于移动应用、在线演示和课程内容等场景。由于其基于 WebGL 和 HTML 的集成,使得它能够在任何支持 Web 浏览器的平台上运行,包括移动设备。
主要特点:
- 高性能:在许多任务中,性能接近原生(C++)代码。
- 无需编译:由于是纯 JavaScript 实现,无需编译或安装,只需将文件复制到任何 Web 浏览器中即可运行。
- 灵活性:支持在浏览器中直接编辑几何处理算法。
2. 项目快速启动
2.1 克隆项目
首先,克隆 geometry-processing-js 仓库到本地:
git clone https://github.com/GeometryCollective/geometry-processing-js.git
cd geometry-processing-js
2.2 运行示例项目
进入 projects 目录,打开任意子目录中的 index.html 文件:
cd projects
open index.html # 在 macOS 上
或者在浏览器中直接打开 index.html 文件。
2.3 示例代码
以下是一个简单的示例代码,展示了如何使用 geometry-processing-js 解决一个泊松方程:
// 为网格的每个顶点分配一个索引
let vertexIndex = indexElements(geometry, mesh, vertices);
// 构建 cotan-Laplace 和质量矩阵
let A = geometry.laplaceMatrix(vertexIndex);
let M = geometry.massMatrix(vertexIndex);
let rhs = M.timesDense(rho);
// 使用给定的右端项 rhs 求解泊松方程
let llt = A.chol();
let phi = llt.solvePositiveDefinite(rhs);
3. 应用案例和最佳实践
3.1 移动应用
geometry-processing-js 特别适合用于移动应用,因为它可以在任何支持 Web 浏览器的移动设备上运行。开发者可以利用其高性能的几何处理能力,创建复杂的 3D 图形应用。
3.2 在线演示
由于其无需安装的特性,geometry-processing-js 非常适合用于在线演示。开发者可以快速构建和部署 3D 几何处理演示,供用户在浏览器中直接体验。
3.3 课程内容
教育机构可以使用 geometry-processing-js 作为教学工具,帮助学生理解和实践 3D 几何处理算法。学生可以直接在浏览器中编辑和运行代码,实时查看结果。
4. 典型生态项目
4.1 three.js
geometry-processing-js 与 three.js 结合使用,可以实现更复杂的 3D 渲染效果。three.js 是一个广泛使用的 3D 图形库,支持 WebGL 渲染。
4.2 Mocha 和 Chai
geometry-processing-js 使用 Mocha 和 Chai 进行单元测试。这些工具可以帮助开发者确保代码的正确性和稳定性。
4.3 Eigen
geometry-processing-js 内部使用了 Eigen 库的 JavaScript 封装,用于高效的线性代数计算。Eigen 是一个高性能的 C++ 线性代数库。
通过以上模块的介绍,开发者可以快速上手并深入了解 geometry-processing-js 的使用和应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00