YugabyteDB YSQL中INSERT ON CONFLICT批处理导致RETURNING返回数据异常问题分析
在YugabyteDB的YSQL功能中,当启用INSERT ON CONFLICT的批量读取功能时,如果RETURNING子句返回的是非指针类型(如text类型),会出现内存无效导致返回垃圾数据的问题。本文将深入分析这一问题的技术背景、原因及解决方案。
问题现象
当用户执行如下SQL语句时:
SET yb_insert_on_conflict_read_batch_size = 1024;
CREATE TABLE texts (i int, t text, UNIQUE (t));
INSERT INTO texts VALUES (1, 'hello world') ON CONFLICT DO NOTHING RETURNING *;
返回结果中的文本字段t显示为乱码,例如:
i | t
---+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------
1 | \x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\
x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F\x7F
值得注意的是,虽然返回数据显示异常,但实际插入数据库的数据是正确的。
技术背景
YugabyteDB为了提高INSERT ON CONFLICT操作的性能,引入了批量读取功能。这一功能通过yb_insert_on_conflict_read_batch_size参数控制,允许系统批量处理冲突检测,减少网络往返次数。
在PostgreSQL及其衍生系统中,RETURNING子句用于返回被修改行的数据。对于复杂数据类型如text,系统需要维护对这些数据的引用,确保在返回给客户端时数据仍然有效。
问题根源
通过分析源代码,发现问题出在nodeModifyTable.c文件中的YbFlushSlotsFromBatch函数。该函数在处理批量操作时,过早地释放了元组表槽(TupleTableSlot),导致RETURNING子句引用的内存区域被标记为无效。
具体来说,函数中调用了ExecDropSingleTupleTableSlot释放了slot和planSlot,但这些槽可能仍被后续的RETURNING处理所引用。对于简单类型如整数,数据是直接内联存储的,不受此影响;但对于text等需要间接引用的类型,就会导致访问已释放内存的问题。
临时解决方案
通过注释掉释放TupleTableSlot的代码可以临时解决此问题:
#if 0
ExecDropSingleTupleTableSlot(slot);
ExecDropSingleTupleTableSlot(planSlot);
#endif
有趣的是,这一修改并没有引发预期的元组表槽引用泄漏警告,这表明系统对资源管理的预期与实际行为存在差异。
影响范围
此问题主要影响以下场景:
- 启用了
yb_insert_on_conflict_read_batch_size参数 - 使用INSERT ON CONFLICT语法
- RETURNING子句返回非内联数据类型(text等)
长期解决方案建议
完整的修复方案应该考虑以下几点:
- 确保RETURNING处理完成前不释放相关资源
- 维护正确的资源生命周期管理
- 添加适当的测试用例覆盖此类场景
- 考虑批量操作与RETURNING子句交互的其他边界情况
总结
这一问题揭示了在优化批量操作时需要特别注意资源生命周期管理的重要性。数据库系统在处理复杂查询时,必须确保数据引用的有效性,特别是在涉及内存管理和查询执行计划优化的场景中。开发者在实现性能优化功能时,应当全面考虑各种查询子句的交互影响,确保功能的正确性和稳定性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00