LMDeploy项目中使用Llama 3.3 70B模型的实践指南
在大型语言模型应用开发中,模型版本的更新往往会带来一些兼容性问题。最近Meta发布了Llama 3.3 70B模型,开发者在LMDeploy项目中使用该模型时遇到了tokenizer相关的报错。本文将详细介绍这一问题的解决方案和技术原理。
问题现象
当开发者尝试在LMDeploy中加载Llama 3.3 70B模型时,系统抛出TypeError异常,提示"TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]"。这一错误通常发生在tokenizer处理输入文本时,表明输入格式不符合预期。
问题分析
经过技术验证,这一问题并非由Llama 3.3 70B模型本身引起,而是与LMDeploy的配置参数有关。具体来说,新版本的Llama模型使用了不同的chat模板格式,而LMDeploy默认可能使用了不兼容的配置。
解决方案
解决这一问题的关键在于正确指定chat模板参数。在启动LMDeploy服务时,需要添加--chat-template llama3_1参数。这一参数确保了tokenizer能够正确处理输入文本的格式。
完整的启动命令示例如下:
docker run --runtime nvidia --gpus '"device=0"' \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=" \
-p 23333:23333 --ipc=host llmdeploy:latest \
lmdeploy serve api_server casperhansen/llama-3.3-70b-instruct-awq \
--backend turbomind --model-format awq --model-name Llama3.1-70B-AWQ \
--chat-template llama3_1
技术原理
-
Chat模板的作用:Chat模板定义了模型如何处理对话格式的输入,包括系统提示、用户输入和模型回复的结构。不同版本的Llama模型可能使用不同的模板格式。
-
Tokenizer兼容性:Llama 3.3 70B模型在tokenizer处理上做了一些优化,需要特定的模板配置才能正常工作。
llama3_1模板确保了与新版模型的兼容性。 -
LMDeploy的适配:LMDeploy作为模型部署框架,需要正确识别和处理不同模型的特殊要求。通过显式指定chat模板,可以避免自动检测可能带来的问题。
最佳实践
-
在使用新版本模型时,建议查阅官方文档了解模型的特性和要求。
-
部署前可以先在测试环境中验证模型和框架的兼容性。
-
保持LMDeploy和相关依赖库(如transformers)的最新版本,以获得最好的兼容性支持。
-
对于Llama系列模型,注意不同版本可能需要不同的chat模板配置。
通过正确配置chat模板参数,开发者可以顺利在LMDeploy中使用最新的Llama 3.3 70B模型,充分发挥其强大的语言理解和生成能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00