D2L项目解析:图像分类数据集Fashion-MNIST详解
2025-06-04 21:20:10作者:翟萌耘Ralph
引言
在深度学习领域,图像分类是最基础也是最重要的任务之一。选择合适的基准数据集对于模型开发和性能评估至关重要。本文将重点介绍Fashion-MNIST数据集,这是一个比传统MNIST更具挑战性的图像分类基准数据集。
MNIST数据集的局限性
MNIST数据集由手写数字0-9组成,曾经是图像分类任务的黄金标准。但随着深度学习技术的发展,MNIST已经变得过于简单:
- 现代模型在MNIST上很容易达到95%以上的准确率
- 难以区分不同模型的性能差异
- 更适合作为完整性检查而非基准测试
Fashion-MNIST数据集介绍
Fashion-MNIST是2017年发布的替代数据集,具有以下特点:
- 包含10个类别的时尚单品图像
- 训练集:每个类别6000张图像,共60000张
- 测试集:每个类别1000张图像,共10000张
- 图像尺寸:28×28像素的灰度图像
- 类别包括:T恤、裤子、套头衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包和短靴
数据集加载与处理
基础加载方法
在不同深度学习框架中,加载Fashion-MNIST的方法略有不同:
MXNet实现:
mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)
PyTorch实现:
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
TensorFlow实现:
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
数据预处理
通常需要对图像数据进行以下处理:
- 转换为张量格式
- 将像素值归一化到[0,1]范围
- 可选地调整图像大小
PyTorch中的预处理示例:
trans = transforms.Compose([
transforms.Resize(resize), # 调整大小
transforms.ToTensor() # 转换为张量并归一化
])
数据可视化
理解数据集的内容非常重要,我们可以通过可视化来检查数据:
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
"""显示图像列表的可视化函数"""
# 实现细节省略...
# 显示前18个训练样本
X, y = mnist_train[:18]
show_images(X, 2, 9, titles=get_fashion_mnist_labels(y))
数据迭代器
高效的数据加载对训练过程至关重要。我们通常使用数据迭代器来批量读取数据:
batch_size = 256
train_iter = data.DataLoader(
mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers())
关键参数说明:
batch_size:每批数据的大小shuffle:是否打乱数据顺序num_workers:用于数据加载的子进程数
完整数据加载函数
为了方便使用,我们可以封装一个完整的加载函数:
def load_data_fashion_mnist(batch_size, resize=None):
"""加载Fashion-MNIST数据集"""
# 实现细节根据框架不同而有所变化
return train_iter, test_iter
这个函数可以:
- 自动下载数据集(如果本地不存在)
- 应用必要的转换
- 返回训练和测试集的迭代器
- 支持可选的图像大小调整
数据集特点总结
- 适中的复杂度:比MNIST更具挑战性,但又不至于过于复杂
- 一致的格式:所有图像大小相同,简化了预处理
- 清晰的类别:10个明确的时尚类别,易于理解和解释
- 标准划分:预设的训练/测试集划分,便于结果比较
实际应用建议
- 批大小选择:通常从256开始尝试,根据GPU内存调整
- 数据增强:可以考虑添加随机翻转等简单增强
- 性能优化:使用多进程数据加载加速训练
- 预处理一致性:确保训练和测试时的预处理完全相同
扩展思考
- 如何为这个数据集设计有效的数据增强策略?
- 如果遇到类别不平衡问题,应该如何调整?
- 对于更大的图像尺寸,如何修改网络结构?
Fashion-MNIST作为经典的图像分类基准数据集,为学习计算机视觉提供了理想的起点。通过深入理解这个数据集,可以为处理更复杂的视觉任务打下坚实基础。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869