D2L项目解析:图像分类数据集Fashion-MNIST详解
2025-06-04 13:45:30作者:翟萌耘Ralph
引言
在深度学习领域,图像分类是最基础也是最重要的任务之一。选择合适的基准数据集对于模型开发和性能评估至关重要。本文将重点介绍Fashion-MNIST数据集,这是一个比传统MNIST更具挑战性的图像分类基准数据集。
MNIST数据集的局限性
MNIST数据集由手写数字0-9组成,曾经是图像分类任务的黄金标准。但随着深度学习技术的发展,MNIST已经变得过于简单:
- 现代模型在MNIST上很容易达到95%以上的准确率
- 难以区分不同模型的性能差异
- 更适合作为完整性检查而非基准测试
Fashion-MNIST数据集介绍
Fashion-MNIST是2017年发布的替代数据集,具有以下特点:
- 包含10个类别的时尚单品图像
- 训练集:每个类别6000张图像,共60000张
- 测试集:每个类别1000张图像,共10000张
- 图像尺寸:28×28像素的灰度图像
- 类别包括:T恤、裤子、套头衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包和短靴
数据集加载与处理
基础加载方法
在不同深度学习框架中,加载Fashion-MNIST的方法略有不同:
MXNet实现:
mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)
PyTorch实现:
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
TensorFlow实现:
mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()
数据预处理
通常需要对图像数据进行以下处理:
- 转换为张量格式
- 将像素值归一化到[0,1]范围
- 可选地调整图像大小
PyTorch中的预处理示例:
trans = transforms.Compose([
transforms.Resize(resize), # 调整大小
transforms.ToTensor() # 转换为张量并归一化
])
数据可视化
理解数据集的内容非常重要,我们可以通过可视化来检查数据:
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
"""显示图像列表的可视化函数"""
# 实现细节省略...
# 显示前18个训练样本
X, y = mnist_train[:18]
show_images(X, 2, 9, titles=get_fashion_mnist_labels(y))
数据迭代器
高效的数据加载对训练过程至关重要。我们通常使用数据迭代器来批量读取数据:
batch_size = 256
train_iter = data.DataLoader(
mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers())
关键参数说明:
batch_size:每批数据的大小shuffle:是否打乱数据顺序num_workers:用于数据加载的子进程数
完整数据加载函数
为了方便使用,我们可以封装一个完整的加载函数:
def load_data_fashion_mnist(batch_size, resize=None):
"""加载Fashion-MNIST数据集"""
# 实现细节根据框架不同而有所变化
return train_iter, test_iter
这个函数可以:
- 自动下载数据集(如果本地不存在)
- 应用必要的转换
- 返回训练和测试集的迭代器
- 支持可选的图像大小调整
数据集特点总结
- 适中的复杂度:比MNIST更具挑战性,但又不至于过于复杂
- 一致的格式:所有图像大小相同,简化了预处理
- 清晰的类别:10个明确的时尚类别,易于理解和解释
- 标准划分:预设的训练/测试集划分,便于结果比较
实际应用建议
- 批大小选择:通常从256开始尝试,根据GPU内存调整
- 数据增强:可以考虑添加随机翻转等简单增强
- 性能优化:使用多进程数据加载加速训练
- 预处理一致性:确保训练和测试时的预处理完全相同
扩展思考
- 如何为这个数据集设计有效的数据增强策略?
- 如果遇到类别不平衡问题,应该如何调整?
- 对于更大的图像尺寸,如何修改网络结构?
Fashion-MNIST作为经典的图像分类基准数据集,为学习计算机视觉提供了理想的起点。通过深入理解这个数据集,可以为处理更复杂的视觉任务打下坚实基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759