Great Expectations 中 Fluent 数据源的内存上下文更新问题解析
2025-05-22 09:41:21作者:柏廷章Berta
问题背景
在使用 Great Expectations 的 Fluent API 进行数据质量验证时,开发人员发现了一个关于数据源管理的异常行为。当通过代码动态创建 Pandas 数据源时,这些数据源虽然会被正确写入到配置文件(great_expectations.yml)中,但不会实时反映在内存中的 DataContext 对象里。
问题现象
具体表现为:
- 使用
context.data_sources.add_pandas()方法创建新的数据源 - 数据源能够成功创建并可用于后续操作(如添加数据资产、定义批次等)
- 检查内存中的 DataContext 对象时,发现
fluent_datasources部分保持为空 - 只有在重新获取上下文(
get_context)后,新增的数据源才会出现在内存上下文中
技术影响
这种不一致行为会对以下场景产生负面影响:
- 动态配置工作流:当需要基于内存中的上下文状态进行后续决策时,由于数据源信息不完整,可能导致逻辑错误
- 上下文序列化:将内存中的上下文对象持久化为文件时,会丢失已创建但未同步的数据源信息
- 实时调试:开发者在交互式环境中无法通过检查上下文对象来验证当前状态
问题根源
经过分析,这个问题源于 Great Expectations 内部的数据源管理机制:
- Fluent API 的数据源操作会直接修改底层存储(如文件系统)
- 但内存中的上下文对象没有实现相应的同步机制
- 导致内存状态与持久化状态出现短暂不一致
- 只有通过重新加载上下文,才能强制同步两者状态
解决方案建议
针对这个问题,可以考虑以下改进方向:
- 内存同步机制:在数据源操作方法中增加内存状态的同步逻辑
- 状态一致性检查:提供显式的同步方法,让开发者可以手动触发状态同步
- 文档说明:明确标注这种行为的预期和解决方法
最佳实践
在实际开发中,如果遇到类似问题,可以采取以下临时解决方案:
- 在关键操作后显式重新加载上下文
- 避免依赖内存上下文的状态进行重要决策
- 优先检查持久化存储中的配置状态
总结
Great Expectations 作为数据质量验证的重要工具,其上下文管理的一致性对开发体验至关重要。这个特定的 Fluent 数据源同步问题虽然不影响核心功能,但在某些工作流中可能造成困惑。理解这一行为有助于开发者更好地规划数据源管理策略,避免潜在的问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.65 K
Ascend Extension for PyTorch
Python
131
157
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
198
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.46 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206