ArduinoJson中高效返回JsonDocument的方法探讨
2025-05-31 00:41:35作者:何将鹤
概述
在ArduinoJson库的使用过程中,开发者经常会遇到需要从类方法返回JsonDocument对象的情况。本文将以一个典型的即时通讯机器人实现为例,深入分析如何高效地处理JsonDocument的返回,避免不必要的性能损耗。
问题背景
在开发基于ArduinoJson的即时通讯机器人时,我们经常需要实现多个重载方法来获取更新信息。这些方法通常会构造不同的请求参数,但最终都需要返回包含响应数据的JsonDocument对象。
原始实现分析
原始代码中实现了三个重载的getUpdates方法:
- 完整参数版本:接收offset和limit参数
- 简化版本:只接收offset参数
- 最简版本:不接收任何参数
这些方法通过链式调用最终都会返回一个JsonDocument对象。开发者担心这种设计会导致JsonDocument在多层调用中被多次复制,造成性能问题。
性能优化原理
实际上,现代C++编译器(包括Arduino环境使用的编译器)会通过以下两种机制来避免不必要的拷贝:
- 返回值优化(RVO):编译器会直接在调用者的栈帧上构造返回值,完全避免拷贝
- 移动语义:即使RVO无法应用,JsonDocument的移动构造函数也会被调用,这比深拷贝要高效得多
JsonDocument类在设计上支持移动语义,这意味着当它作为返回值时,只会发生指针所有权的转移,而不会复制底层的数据结构。
最佳实践建议
- 优先使用返回值:直接返回JsonDocument是最简洁、最高效的方式
- 避免不必要的引用参数:除非有特殊需求,否则不需要通过引用参数来返回JsonDocument
- 保持方法链清晰:像示例中那样通过方法重载和链式调用可以保持代码的清晰性
替代方案比较
虽然可以通过传递引用参数的方式来返回JsonDocument,但这种做法:
- 降低了代码的可读性
- 增加了接口的复杂性
- 并不能带来显著的性能提升
- 可能引入不必要的副作用
因此,在大多数情况下,直接返回JsonDocument是更优的选择。
结论
在ArduinoJson项目中,当需要从方法返回JsonDocument时,开发者可以放心地直接返回值。现代C++的返回值优化和移动语义机制会确保这一操作的高效性,同时保持代码的简洁和可维护性。这种模式不仅适用于即时通讯机器人的实现,也可以推广到其他需要处理JSON数据的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137