CUTLAS项目中关于Tensor分块与内存布局的深入解析
2025-05-31 01:38:34作者:胡唯隽
概述
在CUTLAS项目中,Tensor的分块操作和内存布局管理是高性能计算的核心技术之一。本文将深入探讨项目中使用的关键分块方法及其应用场景,帮助开发者更好地理解和使用这些功能。
分块操作的基本原理
在CUTLAS中,所有的分块方法本质上都是对Tensor应用特定的TV布局,然后通过线程索引进行切片操作。这种操作会生成一个仅保留V模式的Tensor,我们称之为"分块Tensor"。
主要分块方法
-
partition_S/D方法:用于内存拷贝操作
- 这些方法属于GmemTiledCopyQKV类
- partition_S用于源Tensor分块
- partition_D用于目标Tensor分块
-
partition_fragment_A/B/C方法:用于矩阵乘法运算
- 这些方法属于TiledMma类
- 分别对应矩阵乘法的三个逻辑投影:MK、NK和MN
典型应用场景分析
内存拷贝场景
在内存拷贝操作中,我们通常会看到如下代码结构:
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
其中:
tQgQ
表示从全局内存(gQ)中分块的源TensortQsQ
表示将要写入共享内存(sQ)的目标Tensor
矩阵乘法场景
在矩阵乘法运算中,典型代码如下:
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
这里:
tSrQ
表示矩阵A的分块,维度为(MMA, MMA_M, MMA_K)tSrK
表示矩阵B的分块,维度为(MMA, MMA_N, MMA_K)tOrVt
表示转置矩阵的分块
维度与命名规范解析
命名规范
Tensor的命名遵循一定规律:
- 前缀
t
表示Tensor - 第二个字母表示内存位置:
g
为全局内存,s
为共享内存 - 第三个字母表示操作类型:
r
为读取,w
为写入 - 最后一个字母表示Tensor用途:
Q/K/V
等
例如:
tSrQ
:共享内存(S)中用于读取(r)的Q矩阵Tensor
维度说明
分块后的Tensor通常是三维的:
- 第一维(MMA):表示"向量"模式或"原子"模式,包含单个原子操作的所有数据
- 第二维(MMA_M/MMA_N):表示在M或N维度上的分块数量
- 第三维(MMA_K):表示在K维度上的分块数量
这些维度值实际上代表了原子操作需要在其他模式上重复执行的次数,以填充分块Tensor的完整形状。
实际应用示例
考虑如下代码片段:
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});
虽然这里使用了partition_fragment_C方法,但传入的形状是(kBlockM, kHeadDim)。这是因为:
- partitioner使用的是MN投影的TV布局
- 结果Tensor的维度与矩阵C的布局相对应
- 实际计算时会根据需要进行适当的维度转换
总结
CUTLAS项目中的Tensor分块机制为高性能计算提供了灵活而强大的支持。通过理解这些分块方法的原理和应用场景,开发者可以更好地优化自己的计算内核,充分发挥硬件性能。随着CUTLAS 3.5版本的发布,相关文档将会更加完善,为开发者提供更详细的技术指导。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K