CUTLAS项目中关于Tensor分块与内存布局的深入解析
2025-05-31 00:45:05作者:胡唯隽
概述
在CUTLAS项目中,Tensor的分块操作和内存布局管理是高性能计算的核心技术之一。本文将深入探讨项目中使用的关键分块方法及其应用场景,帮助开发者更好地理解和使用这些功能。
分块操作的基本原理
在CUTLAS中,所有的分块方法本质上都是对Tensor应用特定的TV布局,然后通过线程索引进行切片操作。这种操作会生成一个仅保留V模式的Tensor,我们称之为"分块Tensor"。
主要分块方法
-
partition_S/D方法:用于内存拷贝操作
- 这些方法属于GmemTiledCopyQKV类
- partition_S用于源Tensor分块
- partition_D用于目标Tensor分块
-
partition_fragment_A/B/C方法:用于矩阵乘法运算
- 这些方法属于TiledMma类
- 分别对应矩阵乘法的三个逻辑投影:MK、NK和MN
典型应用场景分析
内存拷贝场景
在内存拷贝操作中,我们通常会看到如下代码结构:
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
其中:
tQgQ表示从全局内存(gQ)中分块的源TensortQsQ表示将要写入共享内存(sQ)的目标Tensor
矩阵乘法场景
在矩阵乘法运算中,典型代码如下:
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
这里:
tSrQ表示矩阵A的分块,维度为(MMA, MMA_M, MMA_K)tSrK表示矩阵B的分块,维度为(MMA, MMA_N, MMA_K)tOrVt表示转置矩阵的分块
维度与命名规范解析
命名规范
Tensor的命名遵循一定规律:
- 前缀
t表示Tensor - 第二个字母表示内存位置:
g为全局内存,s为共享内存 - 第三个字母表示操作类型:
r为读取,w为写入 - 最后一个字母表示Tensor用途:
Q/K/V等
例如:
tSrQ:共享内存(S)中用于读取(r)的Q矩阵Tensor
维度说明
分块后的Tensor通常是三维的:
- 第一维(MMA):表示"向量"模式或"原子"模式,包含单个原子操作的所有数据
- 第二维(MMA_M/MMA_N):表示在M或N维度上的分块数量
- 第三维(MMA_K):表示在K维度上的分块数量
这些维度值实际上代表了原子操作需要在其他模式上重复执行的次数,以填充分块Tensor的完整形状。
实际应用示例
考虑如下代码片段:
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});
虽然这里使用了partition_fragment_C方法,但传入的形状是(kBlockM, kHeadDim)。这是因为:
- partitioner使用的是MN投影的TV布局
- 结果Tensor的维度与矩阵C的布局相对应
- 实际计算时会根据需要进行适当的维度转换
总结
CUTLAS项目中的Tensor分块机制为高性能计算提供了灵活而强大的支持。通过理解这些分块方法的原理和应用场景,开发者可以更好地优化自己的计算内核,充分发挥硬件性能。随着CUTLAS 3.5版本的发布,相关文档将会更加完善,为开发者提供更详细的技术指导。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218