CUTLAS项目中关于Tensor分块与内存布局的深入解析
2025-05-31 20:09:07作者:胡唯隽
概述
在CUTLAS项目中,Tensor的分块操作和内存布局管理是高性能计算的核心技术之一。本文将深入探讨项目中使用的关键分块方法及其应用场景,帮助开发者更好地理解和使用这些功能。
分块操作的基本原理
在CUTLAS中,所有的分块方法本质上都是对Tensor应用特定的TV布局,然后通过线程索引进行切片操作。这种操作会生成一个仅保留V模式的Tensor,我们称之为"分块Tensor"。
主要分块方法
-
partition_S/D方法:用于内存拷贝操作
- 这些方法属于GmemTiledCopyQKV类
- partition_S用于源Tensor分块
- partition_D用于目标Tensor分块
-
partition_fragment_A/B/C方法:用于矩阵乘法运算
- 这些方法属于TiledMma类
- 分别对应矩阵乘法的三个逻辑投影:MK、NK和MN
典型应用场景分析
内存拷贝场景
在内存拷贝操作中,我们通常会看到如下代码结构:
typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
其中:
tQgQ
表示从全局内存(gQ)中分块的源TensortQsQ
表示将要写入共享内存(sQ)的目标Tensor
矩阵乘法场景
在矩阵乘法运算中,典型代码如下:
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tOrVt = thr_mma.partition_fragment_B(sVtNoSwizzle); // (MMA, MMA_K,MMA_N)
这里:
tSrQ
表示矩阵A的分块,维度为(MMA, MMA_M, MMA_K)tSrK
表示矩阵B的分块,维度为(MMA, MMA_N, MMA_K)tOrVt
表示转置矩阵的分块
维度与命名规范解析
命名规范
Tensor的命名遵循一定规律:
- 前缀
t
表示Tensor - 第二个字母表示内存位置:
g
为全局内存,s
为共享内存 - 第三个字母表示操作类型:
r
为读取,w
为写入 - 最后一个字母表示Tensor用途:
Q/K/V
等
例如:
tSrQ
:共享内存(S)中用于读取(r)的Q矩阵Tensor
维度说明
分块后的Tensor通常是三维的:
- 第一维(MMA):表示"向量"模式或"原子"模式,包含单个原子操作的所有数据
- 第二维(MMA_M/MMA_N):表示在M或N维度上的分块数量
- 第三维(MMA_K):表示在K维度上的分块数量
这些维度值实际上代表了原子操作需要在其他模式上重复执行的次数,以填充分块Tensor的完整形状。
实际应用示例
考虑如下代码片段:
Tensor acc_o = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kHeadDim>>{});
虽然这里使用了partition_fragment_C方法,但传入的形状是(kBlockM, kHeadDim)。这是因为:
- partitioner使用的是MN投影的TV布局
- 结果Tensor的维度与矩阵C的布局相对应
- 实际计算时会根据需要进行适当的维度转换
总结
CUTLAS项目中的Tensor分块机制为高性能计算提供了灵活而强大的支持。通过理解这些分块方法的原理和应用场景,开发者可以更好地优化自己的计算内核,充分发挥硬件性能。随着CUTLAS 3.5版本的发布,相关文档将会更加完善,为开发者提供更详细的技术指导。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133