SenseVoice项目ONNX模型导出与推理的技术解析
2025-06-07 17:35:32作者:劳婵绚Shirley
SenseVoice作为一款先进的语音处理框架,其ONNX模型导出功能对于生产环境部署至关重要。本文将深入分析该框架在模型导出过程中遇到的技术问题及其解决方案。
ONNX导出过程中的关键问题
在SenseVoice项目的模型导出环节,开发者遇到了两个典型的技术挑战:
-
设备参数传递问题:在
export_meta.py
脚本中,原始代码尝试通过kwargs["device"]
获取设备信息,但实际调用时并未正确传递该参数,导致导出失败。临时解决方案是注释掉相关设备转换代码行。 -
张量维度不匹配:文本规范化查询(textnorm_query)和语言查询(language_query)需要额外处理才能与其他张量正确拼接。具体表现为:
- 需要对textnorm_query进行unsqueeze操作以增加第二维度
- language_query同样需要unsqueeze处理
技术解决方案详解
针对上述问题,我们推荐以下技术实现方案:
def export_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
language: torch.Tensor,
textnorm: torch.Tensor,
**kwargs,
):
# 移除设备转换代码,避免参数缺失错误
language_query = self.embed(language).to(speech.device)
# 维度调整确保张量可拼接
textnorm_query = self.embed(textnorm).to(speech.device)
textnorm_query = torch.unsqueeze(textnorm_query, dim=1)
speech = torch.cat((textnorm_query, speech), dim=1)
speech_lengths += 1
# 事件情感查询处理
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(
speech.size(0), 1, 1
)
language_query = torch.unsqueeze(language_query, dim=1)
input_query = torch.cat((language_query, event_emo_query), dim=1)
speech = torch.cat((input_query, speech), dim=1)
speech_lengths += 3
# 编码器处理
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# CTC输出
ctc_logits = self.ctc.log_softmax(encoder_out)
return ctc_logits, encoder_out_lens
ONNX推理支持现状
SenseVoice项目目前已经完善了对ONNX和LibTorch格式的支持,开发者可以直接使用这些格式的模型进行推理部署。这种标准化格式的支持极大地方便了模型在不同平台和环境中的迁移使用。
最佳实践建议
- 模型导出前:务必检查所有张量的维度是否匹配,特别是需要进行拼接操作的张量
- 设备处理:避免在导出函数中硬编码设备转换,保持设备一致性
- 版本兼容性:确保使用的funasr_onnx库版本与SenseVoice项目要求相匹配
通过理解这些技术细节,开发者可以更顺利地完成SenseVoice模型的导出和部署工作,充分发挥该框架在语音处理领域的强大能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133