SenseVoice项目ONNX模型导出与推理的技术解析
2025-06-07 06:58:14作者:劳婵绚Shirley
SenseVoice作为一款先进的语音处理框架,其ONNX模型导出功能对于生产环境部署至关重要。本文将深入分析该框架在模型导出过程中遇到的技术问题及其解决方案。
ONNX导出过程中的关键问题
在SenseVoice项目的模型导出环节,开发者遇到了两个典型的技术挑战:
-
设备参数传递问题:在
export_meta.py脚本中,原始代码尝试通过kwargs["device"]获取设备信息,但实际调用时并未正确传递该参数,导致导出失败。临时解决方案是注释掉相关设备转换代码行。 -
张量维度不匹配:文本规范化查询(textnorm_query)和语言查询(language_query)需要额外处理才能与其他张量正确拼接。具体表现为:
- 需要对textnorm_query进行unsqueeze操作以增加第二维度
- language_query同样需要unsqueeze处理
技术解决方案详解
针对上述问题,我们推荐以下技术实现方案:
def export_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
language: torch.Tensor,
textnorm: torch.Tensor,
**kwargs,
):
# 移除设备转换代码,避免参数缺失错误
language_query = self.embed(language).to(speech.device)
# 维度调整确保张量可拼接
textnorm_query = self.embed(textnorm).to(speech.device)
textnorm_query = torch.unsqueeze(textnorm_query, dim=1)
speech = torch.cat((textnorm_query, speech), dim=1)
speech_lengths += 1
# 事件情感查询处理
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(
speech.size(0), 1, 1
)
language_query = torch.unsqueeze(language_query, dim=1)
input_query = torch.cat((language_query, event_emo_query), dim=1)
speech = torch.cat((input_query, speech), dim=1)
speech_lengths += 3
# 编码器处理
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# CTC输出
ctc_logits = self.ctc.log_softmax(encoder_out)
return ctc_logits, encoder_out_lens
ONNX推理支持现状
SenseVoice项目目前已经完善了对ONNX和LibTorch格式的支持,开发者可以直接使用这些格式的模型进行推理部署。这种标准化格式的支持极大地方便了模型在不同平台和环境中的迁移使用。
最佳实践建议
- 模型导出前:务必检查所有张量的维度是否匹配,特别是需要进行拼接操作的张量
- 设备处理:避免在导出函数中硬编码设备转换,保持设备一致性
- 版本兼容性:确保使用的funasr_onnx库版本与SenseVoice项目要求相匹配
通过理解这些技术细节,开发者可以更顺利地完成SenseVoice模型的导出和部署工作,充分发挥该框架在语音处理领域的强大能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246