PyTorch/XLA 中 Adam 优化器在惰性张量追踪时的性能问题分析
2025-06-30 00:40:18作者:廉彬冶Miranda
问题背景
在 PyTorch/XLA 项目中,开发者发现当使用 Adam 优化器时,惰性张量(Lazy Tensor)的追踪(tracing)时间会出现显著的性能下降。这个问题最初在社区讨论中被报告,随后被确认为一个需要解决的重要性能问题。
问题现象
通过基准测试可以观察到以下现象:
- 基础情况下(未应用任何优化),Adam 优化器步骤的中位追踪时间约为 0.48 秒
- 应用了 PyTorch 的元函数优化后,时间降低到 0.15 秒
- 完全禁用功能化(functionalization)后,性能最佳,达到 0.04 秒
技术分析
功能化与元函数的影响
PyTorch/XLA 使用功能化(functionalization)技术来处理原地操作(in-place operations),将其转换为功能化的版本。在这个过程中,系统会调用元函数(meta functions)来执行形状推断和类型检查等操作。
问题的根源在于:
- 功能化过程中调用的元函数实现存在性能开销
- Adam 优化器的实现涉及大量张量操作,这些操作在惰性执行模式下需要经过额外的追踪步骤
- 元函数的执行路径没有被充分优化,导致在频繁调用时产生累积性能损耗
解决方案探讨
PyTorch 核心开发团队提出了几种解决方案:
- 优化元函数实现:通过 PR#136909 修复了部分元函数的性能问题,但测试表明这并未完全解决问题
- 禁用功能化:通过设置环境变量可以完全绕过功能化过程,但这会失去相关安全检查
- 选择性禁用元函数:在功能化内核中添加开关,允许在已知安全的情况下跳过元函数执行
实现方案
经过讨论,开发团队决定采用第三种方案,即在功能化内核中添加配置选项,允许选择性禁用元函数参考实现。具体实现方式为:
bool disableMetaReference() {
static auto _value = std::getenv("TORCH_DISABLE_FUNCTIONALIZATION_META_REF");
return _value != nullptr && strcmp(_value, "1") == 0;
}
这种实现具有以下特点:
- 通过环境变量控制,灵活性高
- 保持原有功能化逻辑不变,只是选择性跳过元函数执行
- 在已知操作安全的情况下可以显著提升性能
技术影响
这一优化对 PyTorch/XLA 用户具有以下意义:
- 性能提升:对于使用 Adam 等复杂优化器的模型,训练速度可以得到显著改善
- 兼容性:相比完全禁用功能化,这种方案保持了更好的兼容性和安全性
- 可控性:用户可以根据具体场景选择是否启用这一优化
最佳实践建议
对于遇到类似性能问题的用户,可以考虑:
- 首先尝试更新到包含此修复的 PyTorch/XLA 版本
- 在性能关键路径上评估是否可以使用此优化
- 在确保操作安全性的前提下,通过环境变量启用优化
这一优化已经合并到 PyTorch/XLA 的主干代码中,用户可以通过更新版本来获得性能改进。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1