首页
/ PyTorch/XLA中的占位符张量设计与实现

PyTorch/XLA中的占位符张量设计与实现

2025-06-30 04:35:55作者:齐冠琰

在PyTorch/XLA项目中,开发团队正在探索一种新型的张量类型——"占位符张量"(placeholder tensor),这种设计旨在优化模型训练时的内存使用效率,特别是在处理大型模型如Llama 405B时的性能表现。

背景与动机

在当前的PyTorch/XLA实现中,当使用scan操作符替代传统的for循环时,系统会向计算设备传输大量数据。通过性能分析发现,使用scan操作时数据传输量达到了23GiB,而使用for循环时仅为182MiB。这种差异主要源于IrValueTensorToXlaData路径下的大量数据传输操作。

问题的根源在于make_fake_tensor函数的实现方式。该函数目前通过torch.empty创建张量,虽然名为"空"张量,但实际上会分配内存空间。当这些张量被后续操作使用时,PyTorch/XLA会将这些数据实际传输到设备上,并创建对应的IR节点,导致不必要的内存分配和数据传输。

技术挑战

在现有架构下,PyTorch/XLA缺乏类似Jax中的"抽象张量"概念。Jax在trace组合函数时能够传递抽象张量而非具体数据,从而避免了不必要的数据传输。PyTorch/XLA当前的所有基于惰性张量的trace操作都可能产生意外的副作用,包括不必要的数据传输和张量物化。

特别是在Llama 405B这样的大型模型中,这种额外的数据传输变得尤为显著,甚至可能导致TPU内存不足(OOM)。因此,需要找到一种新的张量表示方式,使其能够被降低为HLO参数,但不会实际传输数据到设备。

解决方案设计

开发团队提出的解决方案是引入"占位符张量"的概念。这种张量具有以下关键特性:

  1. 不分配实际的设备内存
  2. 当尝试读取张量数据时会触发错误
  3. 能够参与IR图的构建和HLO生成
  4. 可以作为输入参数传递给需要trace的函数

在初步实现中,团队发现LoweringContext使用数据句柄来去重参数,因此仍需要某种唯一标识符。目前的临时解决方案是当BackendData对象不包含句柄时,回退到使用torch::lazy::BackendData指针。

技术实现细节

占位符张量的核心思想是延迟内存分配,仅在真正需要时才进行。这与传统的torch.empty不同,后者会立即分配内存空间。实现这种张量需要考虑以下方面:

  1. IR节点生成:确保能够创建对应的DeviceData IR节点,而不需要实际数据
  2. 参数去重机制:修改现有的参数去重逻辑,使其不依赖于实际数据句柄
  3. 错误处理:当尝试读取未初始化的占位符数据时,提供清晰的错误信息
  4. 梯度传播:保持与原张量相同的梯度需求设置

预期收益

成功实现占位符张量后,将为PyTorch/XLA带来以下优势:

  1. 显著减少数据传输:避免在trace阶段传输大量无用数据
  2. 内存使用优化:降低大型模型训练时的内存压力
  3. 性能提升:减少不必要的数据传输和内存分配操作
  4. 更好的抽象:为未来支持更高级的抽象张量功能奠定基础

总结

占位符张量的引入是PyTorch/XLA项目在性能优化方面的重要一步,特别针对大型模型训练场景。通过这种设计,可以显著减少不必要的数据传输和内存分配,从而提升整体训练效率。这一改进也为PyTorch/XLA未来支持更高级的抽象张量功能打下了基础,使其在功能上更接近Jax等框架的抽象能力。

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5