NNG项目在Android平台上clock_gettime函数的使用问题分析
在NNG(Nanomsg Next Generation)项目的1.6.0版本中,引入了一个与Android平台兼容性相关的重要问题。该问题涉及POSIX标准函数clock_gettime在不同平台上的实现差异,特别是在Android系统上的特殊实现方式。
Android系统使用了自己实现的Bionic C库,与传统的Linux系统在函数库组织上有所不同。clock_gettime函数在标准Linux系统中通常位于librt库中,但在Android平台上,这个函数被直接集成到了libc库中。NNG项目当前的构建系统检查逻辑假设clock_gettime总是位于librt库中,导致在Android平台上无法正确检测和使用这个函数。
这个问题的影响在于,当clock_gettime未被正确检测到时,NNG会回退使用自己的nni_clock实现。根据项目文档,这种回退会严重影响NNG在Android平台上的稳定性表现。nni_clock的实现精度和性能通常不如系统原生提供的clock_gettime函数。
解决方案方面,技术专家建议采用更合理的检测顺序:首先在libc中查找clock_gettime函数,只有在未找到的情况下才去检查librt库。这种检测方式更加符合现代系统的实际情况,特别是对Android平台有更好的兼容性。
对于开发者而言,理解不同平台下系统函数的组织方式差异非常重要。POSIX标准虽然定义了函数的行为规范,但并没有严格规定这些函数应该位于哪个具体的库中。在实际开发中,跨平台项目需要特别注意这类实现差异,特别是在移动平台如Android上,系统库的实现往往与传统Linux系统有所不同。
这个问题也提醒我们,在编写跨平台代码时,对系统功能的检测逻辑需要更加全面和灵活,不能假设所有平台都遵循相同的实现模式。合理的检测顺序和回退机制是保证代码在多种平台上都能正常工作的重要保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00