Looker Explore Assistant 开源项目教程
2025-04-18 06:55:56作者:裴麒琰
1. 项目介绍
Looker Explore Assistant 是一个开源项目,它是一个React应用程序,用于通过自然语言与Looker数据交互。这个项目集成了Vertex AI上托管的LLM(语言模型),通过Looker的建模层提供了一个自然语言体验。用户可以通过文本输入生成Looker Explore查询,并以可视化形式展示结果。该扩展还提供了问题历史记录、分类提示、缓存的Explore URL、结构化日志记录等多种功能。
2. 项目快速启动
克隆或下载项目
首先,您需要在您的开发机上克隆或下载这个仓库。
cd ~/ # 可选,通常您的用户目录是一个不错的选择
git clone git@github.com:looker-open-source/looker-explore-assistant.git
或者如果您没有配置git的ssh配置:
cd ~/ # 可选,通常您的用户目录是一个不错的选择
git clone https://github.com/looker-open-source/looker-explore-assistant.git
安装依赖
确保您的计算机上安装了pip,然后在仓库目录下运行以下命令安装所需的依赖:
pip install -r requirements.txt
安装google-cloud-sdk,在looker-explore-assistant目录下安装Google Cloud SDK:
brew install —cask google-cloud-sdk
确保您已经安装了Homebrew。
创建GCP项目和配置
- 创建一个GCP项目(稍后您将需要项目ID)。项目不需要与提示表处于同一个项目,但为了简化操作,建议这样做。
- 为该BigQuery项目创建一个Looker连接。
- 创建一个空的Looker项目,并在模型文件中添加连接名称。
设置Python虚拟环境
python -m venv .venv
source .venv/bin/activate
安装后端示例生成所需的依赖:
pip install -r ./explore-assistant-examples/requirements.txt
pip install -r ./explore-assistant-cloud-function/requirements.txt
后端和前端设置
按照官方文档中的说明进行后端设置、示例生成和前端设置的步骤。
3. 应用案例和最佳实践
在实施Looker Explore Assistant时,以下是一些最佳实践:
- 使用Looker系统活动日志生成查询示例,以帮助模型了解如何创建不同的查询变体。
- 为您的组织自定义分类提示,以更好地适应不同的使用场景。
- 使用结构化日志记录进行成本估算和跟踪。
4. 典型生态项目
Looker Explore Assistant 可以与以下典型生态项目集成:
- Looker Extension SDK:用于创建和部署自定义Looker扩展。
- Google Cloud Platform:提供Vertex AI和其他云服务。
- Tailwind CSS:用于快速UI开发。
通过这些集成,开发者可以构建出功能丰富且易于使用的自然语言查询工具。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210