TandoorRecipes项目将引入AI驱动的PDF菜谱导入功能
在数字化厨房管理领域,TandoorRecipes作为一款开源菜谱管理工具,即将迎来一项重要更新——基于人工智能的PDF文件导入功能。这一创新将显著改善用户从传统文档迁移菜谱的体验。
传统纸质菜谱和电子文档(如PDF/Word)的数字化一直是烹饪爱好者的痛点。许多用户积累了大量的PDF或Word格式菜谱,但手动复制粘贴到菜谱管理系统既耗时又容易出错。TandoorRecipes的开发团队敏锐地捕捉到了这一需求。
技术实现方面,新版本将采用AI技术解析PDF文件内容。AI模型能够智能识别文档中的菜谱结构,包括食材清单、烹饪步骤、准备时间等关键信息,并自动映射到TandoorRecipes的数据库字段中。这种自动化处理大大减少了人工输入的工作量。
值得注意的是,初期版本将优先支持PDF格式。虽然Word文档不会直接支持,但用户可以通过简单的格式转换(如将Word另存为PDF)来利用这一功能。开发团队表示,未来可能会扩展对其他格式的支持。
关于AI处理的隐私和性能考量,开发团队也做了周全考虑。虽然当前版本对AI提供商的配置选项有限,但未来计划增加更多配置选项,以满足不同用户的需求。这种设计既保证了功能的易用性,又为后续扩展留下了空间。
对于技术爱好者关心的部署方式,虽然官方尚未透露具体细节,但参考类似系统(如Paperless-ngx的AI处理模块)的设计,很可能会采用容器化部署方案。这种架构允许将AI处理模块部署在性能更强的独立服务器上,特别适合NAS等低功耗设备用户。
这一功能的推出将有效解决用户从传统文档迁移到数字菜谱管理系统的最后一公里问题。随着后续功能的不断完善,TandoorRecipes有望成为厨房数字化管理的首选工具。开发团队也表示将持续优化批量导入体验,帮助用户更快地完成大量菜谱的数字化工作。
对于期待这一功能的用户,建议提前将Word格式菜谱转换为PDF,为功能上线做好准备。同时可以开始整理现有的电子菜谱,规划分类体系,以便在新功能发布后能够高效地完成迁移工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00