Amazon EKS AMI 中 pause 镜像被错误垃圾回收导致 Pod 无法运行问题分析
问题现象
在使用 Amazon EKS 1.29 版本时,部分节点突然无法创建新的 Pod,错误信息显示无法拉取 pause 容器镜像。具体表现为 kubelet 日志中出现类似以下错误:
Failed to create pod sandbox: rpc error: code = Unknown desc = failed to get sandbox image "602401143452.dkr.ecr.ca-central-1.amazonaws.com/eks/pause:3.5"
问题根源
经过深入分析,发现问题的根本原因是 Kubernetes 1.29 版本引入的镜像垃圾回收机制存在问题,导致关键的 pause 镜像被错误地清理。pause 镜像是 Kubernetes 中每个 Pod 的基础容器,负责维护 Pod 的命名空间和网络栈,其被删除会直接影响 Pod 的创建能力。
技术背景
在 Kubernetes 架构中:
- 每个 Pod 启动时都会先创建 pause 容器
- pause 容器为 Pod 提供共享的 Linux 命名空间
- 其他业务容器会加入到 pause 容器的命名空间中
当 pause 镜像缺失时,整个 Pod 创建流程就会失败。正常情况下,pause 镜像应该被标记为"pinned"(固定),避免被垃圾回收机制清理。
问题详细分析
通过检查节点日志,发现以下关键线索:
- 磁盘使用率触发了镜像垃圾回收机制:
Disk usage on image filesystem is over the high threshold
- 垃圾回收错误地清理了 pause 镜像:
ImageDelete event name:"602401143452.dkr.ecr.ca-central-1.amazonaws.com/eks/pause:3.5"
- 问题主要出现在以下场景:
- 使用 EKS 1.29 版本
- 影响 AL2、AL2023 和 Ubuntu EKS 等多种 AMI
- 随机影响节点,无明确规律
解决方案
对于不同操作系统 AMI,解决方案有所差异:
Amazon Linux 2 (AL2)
该问题已在 AL2 的最新 AMI 中得到修复。建议用户升级到包含修复的 AMI 版本。
Amazon Linux 2023 (AL2023)
在正常配置的 AL2023 节点上,pause 镜像应显示为 pinned 状态:
{
"status": {
"pinned": true
}
}
如果确认是 pinned 状态但仍出现问题,建议报告详细情况。
Ubuntu EKS AMI
目前发现 Ubuntu 的 EKS AMI 中 pause 镜像未被正确标记为 pinned。临时解决方案包括:
- 手动拉取 pause 镜像并标记为 pinned
- 调整 containerd 配置确保 pause 镜像不被清理
- 监控磁盘使用情况,避免触发垃圾回收
最佳实践建议
- 监控磁盘空间:确保节点有足够的磁盘空间,避免频繁触发垃圾回收
- 版本升级:及时升级到包含修复的 AMI 版本
- 资源规划:合理规划节点资源,特别是对于运行关键工作负载的节点
- 镜像缓存策略:对于关键基础镜像,考虑使用本地缓存或私有仓库
总结
Kubernetes 1.29 版本的镜像垃圾回收机制在处理 pause 镜像时存在缺陷,导致节点无法创建新 Pod。这个问题凸显了基础设施组件稳定性的重要性。用户应当关注官方更新,及时应用修复,同时建立完善的监控机制,确保集群稳定性。
对于使用不同操作系统 AMI 的用户,应采取针对性的解决方案,并在设计系统时考虑关键组件的容错能力。随着 Kubernetes 的持续发展,类似的基础设施层问题可能会不时出现,保持系统可观测性和快速响应能力是运维的关键。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00