在双3090显卡上全量微调OpenBMB/OmniLMM项目的MiniCPM-o模型
2025-05-11 09:58:21作者:毕习沙Eudora
背景介绍
OpenBMB/OmniLMM项目中的MiniCPM-o是一个轻量级的多模态大语言模型,支持视觉和语言任务。在实际应用中,研究人员经常需要对这类模型进行全量微调以适应特定场景需求。然而,由于模型参数规模较大,即使在两张24GB显存的NVIDIA 3090显卡上,全量微调也会面临显存不足的挑战。
显存不足问题分析
在尝试使用两张3090显卡(每张24GB显存)进行全量微调时,即使采取了以下优化措施:
- 冻结视觉部分参数
- 仅训练resampler和语言模型部分
- 设置MODEL_MAX_Length为1024
- 设置max_slice_nums为1
- 使用batch_size=1
- 采用DeepSpeed Zero3配置
- 启用offload_optimizer和offload_param到CPU
仍然会出现显存不足的情况。这表明模型在训练过程中的显存需求超过了预期。
解决方案探索
1. 使用pure_bf16精度
传统的混合精度训练(bf16=true)会保留部分fp32参数用于稳定性,而pure_bf16模式则将所有参数都转换为bf16格式,可以进一步节省显存。在LLaMA-Factory等框架中已经实现了这一优化。
2. 框架选择优化
不同微调框架在资源利用效率上存在差异。LLaMA-Factory等专门优化的框架相比原项目可能提供更好的显存管理策略,包括:
- 更高效的内存分配
- 优化的梯度计算流程
- 改进的参数更新机制
3. 训练参数调整
除了精度设置外,还可以尝试:
- 进一步减小上下文长度
- 调整梯度累积步数
- 优化resampler层的配置
- 检查是否有不必要的中间变量保留
实施建议
对于希望在双3090显卡上全量微调MiniCPM-o的研究人员,建议按照以下步骤进行:
- 首先尝试启用pure_bf16模式
- 考虑使用LLaMA-Factory等优化框架
- 逐步调整训练参数,监控显存使用情况
- 必要时可以进一步减少可训练参数范围
- 确保DeepSpeed配置正确加载并生效
通过综合运用这些技术手段,在双3090显卡上实现MiniCPM-o的全量微调是可行的。关键在于找到显存使用和训练效果之间的最佳平衡点。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118