首页
/ OpenBMB/OmniLMM项目中MiniCPM-V-2_6模型加载内存优化实践

OpenBMB/OmniLMM项目中MiniCPM-V-2_6模型加载内存优化实践

2025-05-11 05:24:34作者:霍妲思

问题背景

在OpenBMB/OmniLMM项目中,用户尝试使用vLLM框架加载MiniCPM-V-2_6模型时遇到了显存溢出的问题。该问题在48GB显存的GPU卡上尤为明显,即使显存看似充足,模型加载过程中仍会出现显存不足的错误。

问题分析

通过技术团队的深入分析,发现该问题主要由以下几个因素共同导致:

  1. vLLM初始化机制:vLLM在初始化时会进行空跑测试,这一过程会消耗大量显存。对于视觉语言模型,特别是像MiniCPM-V这样token数较少的模型(64个),计算出的图像处理数量会异常增大。

  2. 默认参数设置:vLLM默认的max_num_seqs参数为256,这在初始化阶段会带来极高的内存消耗。同时,gpu_memory_utilization的默认设置(0.98)也限制了显存的使用效率。

  3. 模型特性:MiniCPM-V-2_6作为视觉语言多模态模型,其视觉编码器部分在处理图像时会消耗大量显存,特别是在批量处理时更为明显。

解决方案

经过多次测试和验证,技术团队总结出以下优化方案:

  1. 调整max_num_seqs参数:将默认值256降低到32,显著减少了初始化时的显存压力。

  2. 优化gpu_memory_utilization:将该参数设置为1,允许框架充分利用所有可用显存。

  3. 合理设置max_model_len:虽然单纯降低该参数效果有限,但结合其他参数调整,设置为4096左右可获得较好效果。

实践验证

在实际环境中,使用以下配置成功在单张3090显卡(24GB显存)上运行了MiniCPM-V-2_6模型:

  • max_model_len: 4096
  • max_num_seqs: 32
  • gpu_memory_utilization: 1

在A100-80G显卡上的测试也表明,通过这些参数调整,模型加载时的显存峰值从29GB降低到了更可控的范围。

技术建议

对于类似的多模态大模型加载问题,建议采取以下策略:

  1. 分阶段测试:先从小参数开始,逐步调整至最优配置。

  2. 监控显存使用:使用nvidia-smi等工具实时监控显存变化,找出瓶颈所在。

  3. 参数协同优化:不要单独调整某一个参数,而应考虑参数间的相互影响。

  4. 硬件匹配:虽然通过优化可以在较小显存上运行,但建议为视觉语言模型配备足够显存的GPU以获得最佳性能。

总结

OpenBMB/OmniLMM项目中MiniCPM-V-2_6模型的显存优化实践表明,通过合理调整vLLM框架参数,可以有效解决大模型加载时的显存问题。这一经验不仅适用于当前项目,也可为其他类似的多模态大模型部署提供参考。未来随着模型规模的不断扩大,显存优化技术将变得更加重要。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133