Auto_Simulated_Universe项目2.3版本适配问题解析与解决方案
问题背景
Auto_Simulated_Universe项目是一款自动化运行"模拟宇宙"游戏模式的工具。在游戏更新至2.3版本后,项目出现了若干兼容性问题,主要表现为图像匹配失败和OCR识别位置偏移。这些问题影响了工具的核心功能,包括事件交互、祝福选择等关键操作。
主要问题分析
图像匹配失效
游戏UI在2.3版本中进行了视觉调整,导致以下关键场景的截图匹配失败:
- 掉落物品识别(drop.jpg)
- 祝福选择界面(drop_bless.jpg)
- 随机事件界面(event.jpg)
- 命途选择界面(fate_3.jpg)
- 奇物界面(strange.jpg)
这些界面元素的视觉变化使得原有的图像模板无法正确匹配,需要更新对应的图像资源。
OCR识别位置偏移
更关键的问题是交互文字识别区域的改变:
- 交互提示文字区域的高度增加了约11像素
- 原有OCR截取区域未能适配新尺寸
- 导致文字识别不完整,影响交互判断
具体表现为工具无法正确识别"与黑塔交互"等关键操作提示。
解决方案
图像资源更新
对于使用编译版的用户,最简单的解决方法是替换以下图像资源:
- drop.jpg
- drop_bless.jpg
- event.jpg
- fate_3.jpg
- strange.jpg
这些新资源需要从游戏2.3版本中重新截取,确保与当前游戏界面一致。
OCR区域调整
源码版解决方案
对于使用源码的用户,需要修改两个关键文件:
- states.py
- utils/utils.py
修改内容为调整OCR识别区域的Y坐标参数,将原有的:
img = self.check("z", 0.3200, 0.4241, mask="mask_f", large=False)
调整为:
img = self.check("z", 0.3200, 0.4324, mask="mask_f", large=False)
这个调整将OCR识别区域向下移动,确保能完整捕捉交互提示文字。
编译版解决方案
对于使用编译版的用户,可以通过修改mask_f.jpg图像资源来间接调整识别区域:
- 保持图像为全黑色
- 增加图像高度至100像素左右
- 保持宽度不变
这种方法通过扩大识别区域来补偿位置偏移,虽然不如直接修改代码精确,但也能解决大部分识别问题。
技术原理深入
图像匹配技术
项目使用OpenCV的模板匹配算法来识别游戏界面元素。当游戏UI更新时,原有模板与新界面之间的相似度可能低于设定的阈值,导致匹配失败。解决方案中的图像资源更新实际上是提供了与新UI匹配的新模板。
OCR识别优化
项目的OCR识别采用区域截取+文字匹配的方式。位置偏移问题的本质是:
- 游戏更新改变了UI布局
- 原有截取区域未能覆盖完整文字
- 导致文字识别不完整
通过调整Y坐标参数,实际上是重新校准了文字识别区域,使其与新版UI对齐。
最佳实践建议
- 推荐使用源码版本,便于后续调整和维护
- 定期检查游戏更新,及时更新图像资源
- 对于OCR问题,可以尝试不同的Y坐标值(0.4320-0.4330)找到最佳匹配
- 遇到识别问题时,检查日志输出以确定具体失败原因
总结
游戏UI更新是自动化工具常见的问题来源。通过分析Auto_Simulated_Universe项目在2.3版本中遇到的问题,我们可以总结出以下通用解决方案思路:
- 及时更新图像模板资源
- 动态调整识别区域参数
- 建立版本适配机制
- 提供灵活的配置选项
这些经验不仅适用于本项目,也可应用于其他游戏自动化工具的开发和维护。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









