SecretFlow生产模式下PSI任务执行问题分析与解决方案
背景介绍
SecretFlow作为一款隐私计算框架,在生产环境部署时可能会遇到各种配置问题。本文针对用户在使用SecretFlow-lite 1.5.0b0版本执行生产模式PSI任务时遇到的"Error: No available node types can fulfill resource request"错误进行深入分析,并提供完整的解决方案。
问题现象
用户在两台机器(机器A和机器B)上部署SecretFlow生产环境时,执行PSI任务出现以下错误提示:
Error: No available node types can fulfill resource request {'CPU': 1.0, 'bob': 1.0}
同时,用户还提出了三个具体疑问:
- 如何解决上述资源请求错误
- Ray集群启动流程的正确顺序
- 生产模式下多机协同执行的时序要求
问题根因分析
经过技术分析,该问题主要由以下几个因素导致:
-
资源配置不当:SecretFlow在生产模式下需要明确指定各参与方的计算资源,而用户配置中缺少必要的资源声明。
-
初始化流程错误:用户混淆了模拟模式(local)和生产模式的初始化方式,错误使用了'local'作为address参数。
-
网络连接问题:日志显示节点间存在连接问题,表明网络配置可能存在问题。
解决方案
1. 正确的Ray集群启动方式
生产模式下,必须先在每台机器上独立启动Ray服务,然后再初始化SecretFlow。
机器A执行命令:
ray start --head --node-ip-address="53.192.24.15" --port="65343" \
--include-dashboard=False --disable-usage-stats \
--resources='{"alice": 8}'
机器B执行命令:
ray start --head --node-ip-address="12.244.69.40" --port="60106" \
--include-dashboard=False --disable-usage-stats \
--resources='{"bob": 8}'
关键点说明:
--resources参数必须明确指定各方的资源配额- 端口号需与后续配置保持一致
- IP地址需使用机器真实IP
2. 正确的SecretFlow初始化方式
机器A初始化代码:
cluster_config = {
'parties': {
'alice': {
'address': '53.192.24.15:65343',
'listen_addr': '0.0.0.0:65343'
},
'bob': {
'address': '12.244.69.40:60106',
'listen_addr': '0.0.0.0:60106'
}
},
'self_party': 'alice'
}
sf.init(address='53.192.24.15:65343', cluster_config=cluster_config)
机器B初始化代码:
cluster_config = {
'parties': {
'alice': {
'address': '53.192.24.15:65343',
'listen_addr': '0.0.0.0:65343'
},
'bob': {
'address': '12.244.69.40:60106',
'listen_addr': '0.0.0.0:60106'
}
},
'self_party': 'bob'
}
sf.init(address='12.244.69.40:60106', cluster_config=cluster_config)
关键点说明:
address参数必须使用Ray服务的真实地址,不能使用'local'- 配置中的端口号必须与Ray启动命令一致
3. 执行时序要求
生产模式下,多机协同执行的时序要求如下:
-
Ray服务启动:各机器可独立启动Ray服务,无严格时序要求。
-
SecretFlow初始化:各方的sf.init()调用应当尽可能同步执行,允许有30秒左右的误差。若一方长时间未启动,另一方会持续重试(默认3600次)。
-
PSI任务执行:必须在所有参与方都成功初始化SPU后才能执行,需要严格同步。
完整PSI任务示例
import spu
import secretflow as sf
from pathlib import Path
# SPU配置
cluster_def = {
"nodes": [
{
"party": "alice",
"address": "53.192.24.15:37267", # 注意使用SPU专用端口
},
{
"party": "bob",
"address": "12.244.69.40:58817", # 注意使用SPU专用端口
}
],
"runtime_config": {
"protocol": spu.spu_pb2.SEMI2K,
"field": spu.spu_pb2.FM128,
},
}
# 初始化SPU
spu = sf.SPU(
cluster_def,
link_desc={
"connect_retry_times": 60,
"connect_retry_interval_ms": 1000,
}
)
# 执行PSI
spu.psi(
keys={"alice": ["name"], "bob": ["name"]},
input_path={
"alice": f"{str(Path.home())}/alice_psi_input.csv",
"bob": f"{str(Path.home())}/bob_psi_input.csv"
},
output_path={
"alice": f"{str(Path.home())}/alice_psi_output.csv",
"bob": f"{str(Path.home())}/bob_psi_output.csv"
},
receiver="alice",
broadcast_result=True,
protocol="PROTOCOL_ECDH",
ecdh_curve="CURVE_25519"
)
总结
SecretFlow生产环境部署需要注意以下关键点:
- 必须预先在各节点独立启动Ray服务,并正确配置资源
- 初始化时必须使用真实网络地址,不能使用'local'
- 网络配置中的端口必须与实际使用端口一致
- 多机协同执行允许有一定时间误差,但关键步骤需要保持同步
- SPU配置需要使用专用通信端口,不能与Ray服务端口冲突
通过以上配置调整,可以成功解决"Error: No available node types can fulfill resource request"错误,并顺利完成生产环境下的PSI任务执行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00