【亲测免费】 推荐文章:快速优化Sentence-Transformers:一键转ONNX实现高效推理
在自然语言处理领域,Sentence-Transformers库因其出色的句子表示能力受到了广泛的关注。然而,随着应用场景的增加,高效的模型推理成为了关键需求。为了应对Sentence-Transformer模型推理速度慢的问题,我们发现了一个名为quick_sentence_transformers的开源项目,它将模型转化为ONNX格式,显著提升了推理效率。
项目介绍
quick_sentence_transformers是一个巧妙的解决方案,它的主要目标是解决Sentence-Transformer模型在实际应用中的性能瓶颈。项目的核心思路是将模型的Transformer部分分离并转换为ONNX模型,再与Poolig层进行整合,从而达到加速推理的效果。该项目提供了一套简洁易用的工具,让开发者能够轻松地优化他们的Sentence-Transformer模型。
项目技术分析
项目采用了模块化的方法来分解Sentence-Transformer模型,特别是关注其耗时的Transformer组件。通过解析modules.json文件,项目成功地将Transformer模型和Pooling模型独立处理。然后,借助ONNX导出功能,将Transformer模型转换为更利于硬件加速的格式。这种分割和转换策略使模型能够在保持精度的同时,大幅度提升运行速度。
应用场景
quick_sentence_transformers适用于任何需要使用Sentence-Transformer模型进行大规模实时推理的场景,如信息检索、相似度匹配、问答系统、情感分析等。特别是在需要快速响应用户请求的在线服务中,项目提供的加速方案将极大地改善用户体验。
项目特点
- 易于使用:项目提供了详细的转换步骤说明和示例代码,用户无需深入了解ONNX或TensorRT的复杂细节即可进行转换。
- 高性能:转换后的模型在GPU环境下有显著的推理加速效果,降低了延迟,提高了吞吐量。
- 兼容性广:支持Sentence-Transformer的各种预训练模型,可灵活应用于不同的NLP任务。
- 持续更新与社区支持:项目维护者积极回应社区反馈,确保了项目与时俱进,适应不断发展的技术环境。
如果你正面临Sentence-Transformer模型推理速度慢的问题,不妨尝试quick_sentence_transformers,它将帮助你在不牺牲模型效果的情况下,大幅提升你的应用程序性能。更多信息和源码,请访问项目主页:https://github.com/yuanzhoulvpi2017/quick_sentence_transformers。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00